Смекни!
smekni.com

Полные лекции по аэродинамике и динамике полета. Часть 1 (стр. 3 из 4)

Вектор
S в общем случае не перпендикулярен к dS, поэтому различают нормальную составляющую pSn, называемую нормальным напряжением или нормальным давлением, и тангенциальную pSt, называемую касательным напряжением или внутренним трением:
SdS = pSn
dS + pStt dS.

Свойство вектора

S рассмотрим с помощью представления бесконечно малой частицы в виде тетраэдра с ребрами, параллельными осям координат (рис. 2). Площади граней такого тетраэдра равны S, S×cos(
,x), S×cos(
,y), S×cos(
,z).

Массовые силы будем считать постоянными во всем объеме W = hS/3 бесконечно малой частицы, а поверхностные силы

1,
2,
3,
S постоянными на своих гранях. Это позволит применить к частице начало Даламбера из теоретической механики:

откуда, сократив на S, и перейдя к пределу при h ® 0, получаем инвариантное к выбору площадки равенство:

. (2.1)

Это означает, что существует некоторый объект P, компонентами

которого можно рассматривать векторы

, или даже элементы матрицы (pij) – матрицы из компонент векторов
. Объект P с компонентами pij называется тензором внутренних напряжений.

Равенство (2.1) позволяет применить теорему Остроградского-Гаусса (1.10) к расчету поверхностных сил:

(2.2)

Кроме сил на каждую частицу жидкости могут действовать и моменты. Примером может служить момент магнитного поля Земли, действующий на каждый элемент стрелки компаса. Такой момент, который действует на элемент массы Dm, будем обозначать

. Его принято называть массовой парой (мас­совым моментом). Размерность
совпадает с размерностью квадрата скорости.

Момент, который действует на элемент поверхности DS, будем обозначать

. Он называется поверхностной парой (поверхност­ным моментом) и имеет размерность силы, деленной на длину.

2.2. Уравнения движения сплошной среды

В теоретической механике известно уравнение количества движения материальной точки:

,

где в правой части равенства стоит сумма всех действующих на нее сил. Обобщим это уравнение на конечный объем сплошной среды, состоящей из частиц, как системы материальных точек, подверженных действию рассмотренных в разделе 2.1 объемных и поверхностных сил:

. (2.3)

Уравнение количества движения конечного объема сплошной среды (2.3), являющееся аналогом второго закона Ньютона, имеет такое же фундаментальное значение для описания любых движений сплошной среды. Оно справедливо и для разрывных движений, и для ударных процессов, характеризующихся разрывными функциями координат и времени (но не нарушениями гипотезы сплошности – см. раздел 1.1).

Заменив последнее слагаемое в (2.3) с помощью (2.2), получим:

,

левую часть которого преобразуем с помощью (1.12):

.

Это позволит записать равенство подынтегральных выражений для элементарного объема:

.

Левую часть этого уравнения в свою очередь можно преобразовать с помощью уравнения неразрывности (1.16):

Таким образом, получено основное дифференциальное уравнение движения сплошной среды:

, (2.4)

или в проекциях на оси декартовой системы координат:

(2.5)

где

компоненты массовой силы
.

Отметим, что уравнения (2.4) и (2.5) получены при следующих предположениях:

– непрерывность и дифференцируемость векторов напряжений

1,
2,
3,

неразрывность среды,

непрерывность характеристик движения.

Итак, для описания движения сплошной среды имеются: скалярное уравнение неразрывности (1.16) и одно векторное (2.4) или три скалярных (2.5) уравнения движения. В этой системе уравнений при заданных внешних массовых силах

(Fx,Fy,Fz) неизвестными функциями пространственных координат и времени являются: плотность r, скорость
(Vx,Vy,Vz) и три вектора напряжений
1(p11,p21,p31),
2(p12,p22,p32),
3(p13,p23,p33) со своими девятью координатами. Так как число уравнений меньше числа неизвестных, то система незамкнута. Для ее замыкания необходимо использовать дополнительные соотношения между неизвестными. Такие соотношения может дать модель конкретной среды.

2.3. Виды сплошной среды

Экспериментальные данные показывают, что большинство сред обладает специфическим свойством: отсутствием или малостью касательных напряжений pSt, т.е. вектор

S можно считать перпендикулярным любой площадке взаимодействия dS и равным нормальному напряжению pSn. Среду, обладающую таким свойством называют идеальной жидкостью или идеальным газом. Близки к таковым обычные воздух и вода при малых скоростях.

Указанное свойство для любой площадки с нормалью

можно выразить соотношением, вытекающим из (2.1):

,