Смекни!
smekni.com

Управление техническими системами лекции (стр. 12 из 17)

Методы измерения уровня: 1) поплавковый, 2) буйковый, 3) гидростатический, электрические и др.

1.10.2 Поплавковый метод измерения уровня.

Поплавковый уровнемер построен по принципу использования выталкивающей силы жидкости. Чувствительный элемент представляет собой тело произвольной формы (поплавок), плавающий на поверхности жидкости и имеющий постоянную осадку. Поплавок перемещается вертикально вместе с уровнем жидкости и текущее значение уровня определяется фиксацией положения поплавка.

1.10.3 Буйковые уровнемеры.

Действие буйкового уровнемера основано на законе Архимеда. Чувствительный элемент буйкового уровнемера - буй - массивное тело, подвешенное вертикально внутри сосуда, уровень жидкости в котором контролируется. По мере изменения уровня жидкости изменяется погружение буя вследствии компенсации выталкивающей силы жидкости изменением усилия в подвеске.

Таким образом, по величине погружения буя судят об уровне жидкости в сосуде. Характеристика буйкового уровнемера линейная, а чувствительность тем больше, чем больше площадь поперечного сечения буя.

1.10.4 Гидростатические уровнемеры.

В этих приборах измерение уровня жидкости постоянной плотности сводится к измерению давления, созданного столбом жидкости Р = rж g h.

Различают пьезометрические уровнемеры и уровнемеры с непосредственным измерением столба жидкости.

Пьезометрические уровнемеры применяются для измерения уровня самых разнообразных, в том числе вязких и агрессивных жидкостей.

Воздух из пьезометрической трубки 1 барботирует через слой жидкости. Количество воздуха, подаваемого под давлением, ограничивается дросселем 3 таким образом, чтобы скорость движения его в трубопроводе была минимально возможной. Уровень жидкости определяется по разности давления в дифманометре 2.

1.10.5 Электрические методы измерения уровня.

Для измерения уровня жидкости может быть использовано различие электрических свойств жидкости и парогазовой смеси под ней. Под электрическими свойствами понимаются диэлектрическая проницаемость и электропроводность веществ.

Кондуктометрический метод измерения уровня основан на измерении электрической проводимости первичного преобразователя, зависящей от значения уровня.

Емкостной метод измерения основан на изменении емкости первичного преобразователя в зависимости от положения уровня измеряемой среды. Обычно первичный преобразователь выполняется в виде коаксиальных цилиндрических обкладок, погруженных в измеряемую жидкость. С изменением уровня жидкость заполняет пространство между обкладками и тем самым изменяет их электрическую емкость. Зависимость между уровнем жидкости и емкостью пропорциональная.

2. Исполнительные устройства.

2.1. Классификация исполнительных устройств.

Исполнительным устройством (ИУ) называется устройство в системе управления, непосредственно реализующее управляющее воздействие со стороны регулятора на объект управления путем механического перемещения регулирующего органа (РО) объекта.

Большинство управляющих воздействий в нефтепереработке, нефтедобыче и нефтехимии реализуется путем изменения расходов веществ (например, сырья, топлива, кубового остатка колонны и т.д.).

Уравнение статики ИУ для расхода F жидкости или газа может быть описано как

F = F(ΔP, ν, ρ, C1, C2, …),

где ΔP – перепад давления на РО, ν - вязкость, ρ – плотность, Сi – некоторые параметры, зависящие от конструкции РО, режима истечения потока и т.д. Отсюда видно, что расход F может быть изменен путем:

- изменения ΔP (насосные ИУ),

- ν или ρ (реологические ИУ),

- коэффициентами Ci (дроссельные ИУ).

2.2. Исполнительные устройства насосного типа.

Структура ИУ насосного типа представлена на рисунке, где обозначено: u – управляющее воздействие со стороны регулятора, ИМ – исполнительный механизм (привод), РО – регулирующий орган (насос), Хр – параметр, изменяющий производительность насоса (частота вращения вала, ход поршня и т.д.).

Для данных ИУ, как правило, давление на выходе Рвых больше, чем давление на входе Рвх, а перепад давления на РО определяется как ΔР = Рвых – Рвх.

Насосные ИУ делятся на три класса:

1) С вращательным движением РО:

а) шестеренчатые – зубья шестеренок создают со стенками корпуса множество объемов, посредством которых жидкость из всасывающей линии подается в нагнетательную; обратный ток жидкости существенно меньше, так как при зацеплении шестеренок между собой остаточные объемы невелики.

б) шиберные – при вращении шиберы центробежными силами прижимаются к корпусу и образуют с ним переменные объемы: на всасывающейся линии увеличивающиеся, на нагнетательной – уменьшающиеся.

в) винтовые – перекачка производится винтовым шнеком.

г) центробежные – изменение расхода происходит за счет изменения входной скорости в полости ротора насоса.

2) С поступательным движением РО:

а) поршневые,

б) мембранные,

в) сильфонные.

2.3. Исполнительные устройства реологического типа.

Некоторые жидкости и дисперсионные системы могут изменять вязкость под действием электрического поля (например, вазелиновое, трансформаторное, касторовое масла, олефины, алюмосиликаты и др.), т.е. F = F(ν).

Преобразователь в ИУ данного типа осуществляет изменение электромагнитного поля в РО в зависимости от u, которое в свою очередь влияет на ν. При этом расход F на РО изменяется пропорционально.

2.4. Исполнительные устройства дроссельного типа.

Эти ИУ нашли преимущественное распространение в силу универсальности и простоты. В зависимости от u ИМ изменяет какой-либо параметр дросселя РО, что приводит к изменению расхода F.

Пропускной характеристикой дросселя называется зависимость расхода F от перепада давления ΔР = Рвх – Рвых, положения РО и т.д.

Зависимость F(ΔР) для турбулентного потока:

F = γ

,

где

, S – площадь сечения потока, ξ – коэффициент местного сопротивления, ρ – плотность.


Типы ИУ:

1) Плунжерные – расход регулируется путем изменения площади проходного сечения, образованного парой «седло-затвор» (см. рис.). Форма затвора подбирается таким образом, чтобы пропускная характеристика F = F(h) была линейна (h – положение штока).

2) Шланговые – расход регулируется сжиманием гибкого шланга (тип ПШУ-1).

3) Диафрагмовые – используют гибкие мембраны.

4) Заслоночные – используют заслонки в виде дисков, вращающихся в сечении трубопровода.

5) Краны – используют затворы, выполненные в виде цилиндра, усеченного конуса или сферы с проходным отверстием; расход регулируется поворотом затвора на определенный угол.

6) Задвижки – расход регулируется плоской задвижкой, перемещающейся перпендикулярно оси трубопровода.

2.5. Исполнительные механизмы.

Стандартные исполнительные механизмы (ИМ) работают в комплекте с РО, образуя вместе ИУ, и классифицируются по:

- виду энергии, создающей перестановочное усилие (электрические, пневматические, гидравлические и др.);

- виду движения (прямоходовые, однооборотные и многооборотные);

- принципу создания перестановочного усилия (мембранные, поршневые, сильфонные, лопастные, электромагнитные, электродвигательные и др.).

Пневматические ИМ нашли широкое распространение благодаря простоте конструкции, низкой стоимости, надежности, способности работать в пожаро- и взрывоопасных условиях. Недостатки: ограниченность расстояния от регулятора до места установки ИУ (обычно до 200 м), низкое быстродействие, низкий класс точности.

Входным сигналом этих ИМ является давление сжатого воздуха, которое, воздействуя на мембрану, создает усилие

F = Sэфu – Ро),

где Pu – управляющее давление,

Ро – начальное давление, при котором создается движение плунжера,

Sэф – эффективная площадь мембраны.

Электрические ИМ имеют преимущества: высокое быстродействие, точность позиционирования, компактность, доступность источника энергии, большие перестановочные усилия. Недостатки: дороговизна, необходимость мер защиты во взрыво- и пожароопасных условиях.

Подразделяются на электродвигательные (привод от двигателя) и электромагнитные.

Промышленность выпускает практически только электродвигательные ИМ с напряжением 220 В или 380 В:

- многооборотные (МЭМ),

- однооборотные (МЭО) с углом поворота до 360º,