Методы измерения уровня: 1) поплавковый, 2) буйковый, 3) гидростатический, электрические и др.
1.10.2 Поплавковый метод измерения уровня.
Поплавковый уровнемер построен по принципу использования выталкивающей силы жидкости. Чувствительный элемент представляет собой тело произвольной формы (поплавок), плавающий на поверхности жидкости и имеющий постоянную осадку. Поплавок перемещается вертикально вместе с уровнем жидкости и текущее значение уровня определяется фиксацией положения поплавка.
1.10.3 Буйковые уровнемеры.
Действие буйкового уровнемера основано на законе Архимеда. Чувствительный элемент буйкового уровнемера - буй - массивное тело, подвешенное вертикально внутри сосуда, уровень жидкости в котором контролируется. По мере изменения уровня жидкости изменяется погружение буя вследствии компенсации выталкивающей силы жидкости изменением усилия в подвеске.Таким образом, по величине погружения буя судят об уровне жидкости в сосуде. Характеристика буйкового уровнемера линейная, а чувствительность тем больше, чем больше площадь поперечного сечения буя.
1.10.4 Гидростатические уровнемеры.
В этих приборах измерение уровня жидкости постоянной плотности сводится к измерению давления, созданного столбом жидкости Р = rж g h.Различают пьезометрические уровнемеры и уровнемеры с непосредственным измерением столба жидкости.
Пьезометрические уровнемеры применяются для измерения уровня самых разнообразных, в том числе вязких и агрессивных жидкостей.
Воздух из пьезометрической трубки 1 барботирует через слой жидкости. Количество воздуха, подаваемого под давлением, ограничивается дросселем 3 таким образом, чтобы скорость движения его в трубопроводе была минимально возможной. Уровень жидкости определяется по разности давления в дифманометре 2.
1.10.5 Электрические методы измерения уровня.
Для измерения уровня жидкости может быть использовано различие электрических свойств жидкости и парогазовой смеси под ней. Под электрическими свойствами понимаются диэлектрическая проницаемость и электропроводность веществ.Кондуктометрический метод измерения уровня основан на измерении электрической проводимости первичного преобразователя, зависящей от значения уровня.
Емкостной метод измерения основан на изменении емкости первичного преобразователя в зависимости от положения уровня измеряемой среды. Обычно первичный преобразователь выполняется в виде коаксиальных цилиндрических обкладок, погруженных в измеряемую жидкость. С изменением уровня жидкость заполняет пространство между обкладками и тем самым изменяет их электрическую емкость. Зависимость между уровнем жидкости и емкостью пропорциональная.
2. Исполнительные устройства.
2.1. Классификация исполнительных устройств.
Исполнительным устройством (ИУ) называется устройство в системе управления, непосредственно реализующее управляющее воздействие со стороны регулятора на объект управления путем механического перемещения регулирующего органа (РО) объекта.
Большинство управляющих воздействий в нефтепереработке, нефтедобыче и нефтехимии реализуется путем изменения расходов веществ (например, сырья, топлива, кубового остатка колонны и т.д.).
Уравнение статики ИУ для расхода F жидкости или газа может быть описано как
F = F(ΔP, ν, ρ, C1, C2, …),
где ΔP – перепад давления на РО, ν - вязкость, ρ – плотность, Сi – некоторые параметры, зависящие от конструкции РО, режима истечения потока и т.д. Отсюда видно, что расход F может быть изменен путем:
- изменения ΔP (насосные ИУ),
- ν или ρ (реологические ИУ),
- коэффициентами Ci (дроссельные ИУ).
2.2. Исполнительные устройства насосного типа.
Структура ИУ насосного типа представлена на рисунке, где обозначено: u – управляющее воздействие со стороны регулятора, ИМ – исполнительный механизм (привод), РО – регулирующий орган (насос), Хр – параметр, изменяющий производительность насоса (частота вращения вала, ход поршня и т.д.).
Для данных ИУ, как правило, давление на выходе Рвых больше, чем давление на входе Рвх, а перепад давления на РО определяется как ΔР = Рвых – Рвх.Насосные ИУ делятся на три класса:
1) С вращательным движением РО:
а) шестеренчатые – зубья шестеренок создают со стенками корпуса множество объемов, посредством которых жидкость из всасывающей линии подается в нагнетательную; обратный ток жидкости существенно меньше, так как при зацеплении шестеренок между собой остаточные объемы невелики.б) шиберные – при вращении шиберы центробежными силами прижимаются к корпусу и образуют с ним переменные объемы: на всасывающейся линии увеличивающиеся, на нагнетательной – уменьшающиеся.
в) винтовые – перекачка производится винтовым шнеком.г) центробежные – изменение расхода происходит за счет изменения входной скорости в полости ротора насоса.
2) С поступательным движением РО:
а) поршневые,
б) мембранные,
в) сильфонные.
2.3. Исполнительные устройства реологического типа.
Некоторые жидкости и дисперсионные системы могут изменять вязкость под действием электрического поля (например, вазелиновое, трансформаторное, касторовое масла, олефины, алюмосиликаты и др.), т.е. F = F(ν).Преобразователь в ИУ данного типа осуществляет изменение электромагнитного поля в РО в зависимости от u, которое в свою очередь влияет на ν. При этом расход F на РО изменяется пропорционально.
2.4. Исполнительные устройства дроссельного типа.
Эти ИУ нашли преимущественное распространение в силу универсальности и простоты. В зависимости от u ИМ изменяет какой-либо параметр дросселя РО, что приводит к изменению расхода F.Пропускной характеристикой дросселя называется зависимость расхода F от перепада давления ΔР = Рвх – Рвых, положения РО и т.д.
Зависимость F(ΔР) для турбулентного потока:
F = γ
,где
, S – площадь сечения потока, ξ – коэффициент местного сопротивления, ρ – плотность.Типы ИУ:
1) Плунжерные – расход регулируется путем изменения площади проходного сечения, образованного парой «седло-затвор» (см. рис.). Форма затвора подбирается таким образом, чтобы пропускная характеристика F = F(h) была линейна (h – положение штока).
2) Шланговые – расход регулируется сжиманием гибкого шланга (тип ПШУ-1).
3) Диафрагмовые – используют гибкие мембраны.