6.Если после решения всех уравнений системы переменные, входящие в левые части уравнений, изменили свои значения, то вновь помечаются те уравнения, в правые части которых входят эти переменные. Затем осуществляется переход к п.5. В противном случае моделирование данного входного набора считается законченным. Выполнение п.5 называется тактом моделирования.
Анализ схемы (рис.13) методом асинхронного моделирования приведен ниже. Для данной схемы входной набор А(1011110) заменяется набором В(1101011).
Рис. 13. Комбинационная схема для метода асинхронного моделирования.
Уравнения, описывающие ЛЭ:
Абстрактный автомат (рис.14) имеет один вход и один выход. Автомат работает в дискретном времени, принимающем целые неотрицательные значения t = 0,1,2,... В каждый момент t дискретного времени автомат находится в некотором состоянии a(t) из множества состояний автомата, причем в начальный момент t = 0 он всегда находится в начальном состоянии a(0)=a1. В момент t, будучи в состоянии a(t), автомат способен воспринять на входе букву входного алфавита z(t) Î Z. В соответствии с функцией выходов он выдаст в тот же момент времени t букву выходного алфавита W(t)=l(a(t), z(t)) и в соответствии с функцией переходов перейдет в следующее состояние a(t+1)=d[a(t), z(t)], a(t) ÎA, w(t) ÎW.
Смысл понятия абстрактного автомата состоит в том, что он реализует некоторое отображение множества слов входного алфавита Z во множество слов выходного алфавита W. Т.е. если на вход автомата, установленного в начальное состояние a1, подавать буква за буквой некоторую последовательность букв входного алфавита z(0), z(1),... - входное слово, то на выходе автомата будут последовательно появляться буквы выходного алфавита w(0), w(1),... - выходное слово. Т.о. выходное слово = j(входное слово), где j - отображение, осуществляемое абстрактным автоматом.
На уровне абстрактной теории понятие "работа автомата" понимается как преобразование входных слов в выходные. Можно сказать, что в абстрактном автомате отвлекаемся от его структуры - содержимого прямоугольника (рис. 14 ), рассматривая его как "черный ящик", т.е. основное внимание уделяем поведению автомата относительно внешней среды.
Понятие состояния в определении автомата введено в связи с тем, что часто возникает необходимость в описании поведения систем, выходы которых зависят не только от состояния входов в данный момент времени, но и от некоторой предыстории, т.е. от сигналов, которые поступали на входы системы ранее. Состояния как раз и соответствуют некоторой памяти о прошлом, позволяя устранить время как явную переменную и выразить выходной сигнал как функцию состояния и входа в данный момент времени.
На практике наибольшее распространение получили два класса автоматов - автоматы Мили (Mealy) и Мура (Moore).
Закон функционирования автомата Мили задается уравнениями:
a(t+1) = d(a(t), z(t)); w(t) = l(a(t), z(t)), t = 0,1,2,...
Закон функционирования автомата Мура задается уравнениями:
a(t+1)=d(a(t), z(t)); w(t) = l(a(t)), t = 0,1,2,...
Из сравнения законов функционирования видно, что, в отличие от автомата Мили, выходной сигнал в автомате Мура зависит только от текущего состояния автомата и в явном виде не зависит от входного сигнала. Для полного задания автомата Мили или Мура дополнительно к законам функционирования, необходимо указать начальное состояние и определить внутренний, входной и выходной алфавиты.
Кроме автоматов Мили и Мура иногда оказывается удобным пользоваться совмещенной моделью автомата, так называемым С- автоматом.
Под абстрактным С- автоматом будем понимать математическую модель дискретного устройства, определяемую восьмикомпонентным вектором S=( A, Z, W, U, d, l1, l2, а1 ), у которого:
1. A={a1, a2, ... ,am} - множество состояний;
2. Z={z1, z2, ... ,zf} - входной алфавит;
3. W={w1, w2, ..., wg} - выходной алфавит типа 1;
4. U={u1, u2,...,uh} - выходной алфавит типа 2;
5. d : A · Z ® A - функция переходов, реализующая отображение DdÍА·Z в А;
6. l1: A · Z ® W - функция выходов, реализующая отображение Dl1ÍА·Z в W;
7. l2: A ® U - функция выходов, реализующая отображение Dl2Í А в U;
8. а1 Î А - начальное состояние автомата.
Абстрактный С- автомат можно представить в виде устройства с одним входом, на который поступают сигналы из входного алфавита Z, и двумя выходами, на которых появляются сигналы из алфавитов W и U. Отличие С - автомата от моделей Мили и Мура состоит в том, что он одновременно реализует две функции выходов l1 и l2, каждая из которых характерна для этих моделей в отдельности. Закон функционирования С- автомата можно описать следующими уравнениями:
а( t + 1) = d( a( t ), z( t )); w( t ) = l1( a ( t ), z( t )); u( t ) = l2( a( t )); t = 0, 1, 2, ...
Выходной сигнал Uh=l2( am ) выдается все время, пока автомат находится в состоянии am. Выходной сигнал Wg=l1( am, zf ) выдается во время действия входного сигнала Zf при нахождении автомата в состоянии am.
Рассмотренные выше абстрактные автоматы можно разделить на:
1) полностью определенные и частичные;
2) детерминированные и вероятностные;
3) синхронные и асинхронные;
Полностью определенным называется абстрактный цифровой автомат, у которого функция переходов и функция выходов определены для всех пар ( ai, zj ).
Частичным называется абстрактный автомат, у которого функция переходов или функция выходов, или обе эти функции определены не для всех пар ( ai, zj ).
К детерминированным относятся автоматы, у которых выполнено условие однозначности переходов : автомат, находящийся в некотором состоянии ai, под действием любого входного сигнала zj не может перейти более, чем в одно состояние.
В противном случае это будет вероятностный автомат, в котором при заданном состоянии ai и заданном входном сигнале zj возможен переход с заданной вероятностью в различные состояния.
Для определения синхронных и асинхронных автоматов вводится понятие устойчивого состояния. Состояние as автомата называется устойчивым, если для любого состояния ai и входного сигнала zj таких, что d( ai, zj ) = as имеет место d( as, zj ) = as, т.е. состояние устойчиво, если попав в это состояние под действием некоторого сигнала zj, автомат выйдет из него только под действием другого сигнала zk, отличного от zj.
Автомат, у которого все состояния устойчивы - асинхронный.