Министерство специального и высшего образования
Хабаровский государственный технический университет
Кафедра «Автоматика и системотехника»
По предмету: Математические основы теории систем
Курсовая работа состоит из 3-х разделов, в каждом из которых рассматривается отдельный параграф дисциплины «Математические основы теории систем».
В первом разделе данной курсовой работы требуется, имея схему системы автоматического управления перейти к сигнальному графу, определить его структурные характеристики и проанализировать с помощью формулы Мезона.
Во втором разделе необходимо рассмотреть логические функции, способы их задания и синтез комбинационных схем.
В третьем разделе необходимо синтезировать автомат с памятью на основе содержательного описания алгоритма его работы.
Курсовая работа содержит пояснительную записку состоящую из трех разделов на 38 листах формата А4, включающую 6 рисунков, 2 схемы, 14 таблиц и 3 литературных источника.
Объектом исследования являются система автоматического управления и логическое устройство, в данном случае семисегментный элемент.
Цель работы состоит в том чтобы закрепить на практике теоретический материал курса лекций «Математические основы теории систем» и приобретение навыков по анализу систем и синтезу схем.
Ключевые слова: структурная схема, сигнальный граф, путь, конур, САУ, синтез схем, конечный автомат, логическая функция, таблица истинности, минимизация, карты Карно, неопределенные коэффициенты, первичные импликаты, минитермы, функциональная схема, триггер.
Задание 1. Анализ сигнальных графов. 7
1.2 Преобразование структурной схемы к сигнальному графу 7
1.2 Преобразование структурной схемы к сигнальному графу 8
1.5 Построение бинарных матриц путей выхода для заданных контрольных точек. 10
1.6 Бинарная матрица контуров. 12
1.7 Матрица касания контуров 12
1. 8 Матрица касания путей и контуров 13
1.9 Формула Мэзона для заданного сигнального графа 13
Задание 2. Синтез комбинационных схем. 16
2.1 Определение поставленной задачи 16
2.2 Составление логических функций 19
2.2.1 Дизъюнктивная совершенная нормальная форма 19
2.2.2 Конъюнктивная совершенная нормальная форма 20
2.3 Минимизация булевых функций 20
2.3.1 Пример минимизации методом неопределенных коэффициентов 21
2.3.2 Пример минимизации методом Квайна-Мак-Класки. 22
2.3.3 Пример минимизации картами Карно 25
2.4 Совместная минимизация всех функций 26
2.5 Запись МДНФ в заданном базисе 27
3. СИНТЕЗ АВТОМАТА С ПАМЯТЬЮ 29
3.1 Анализ технического задания 29
3.2 Формальное описание абстрактного автомата 29
3.3 Кодирование входных и выходных символов состояний 31
3.4 Обобщенная функциональная схема структурного автомата 32
3.5 Каноническая система логических уравнений 33
3.6 Минимизация логических функций 35
3.7 Построение комбинационной схемы автомата с памятью 35
Задание 1. Анализ сигнальных графов.
Из букв, образующих фамилию, имя и отчество получим три множества А, В и С символов русского алфавита.
Хоменко А={Х, О, М, Е, Н, К}
Дмитрий B={Д, М, И, Т, Р, Й}
C={И, Г, О, Р, Е, В, Ч}
Произведя соответствующие операции над множествами получим их мощности. Из таблицы возможных мощностей методического указания выбираются типы соответствующих полученным результатам типы соединений элементов в системе автоматического управления.
½AÈB½=½{ Х, О, М, Е, Н, К , Д, И, Т, Р, Й }½=11
½( AÈB)ÇС½=½{Е, И, О, Р}½=4
½C\A½=½{И, Г, Р, В, Ч}½=5
½AÈB½=½U\ AÈB½=33-11=22
По полученным результатам построим схему автоматического управления системой.
Матицей смежности графа G называется матрица R=[rij] размером nxn, где n – число вершин графа, в которой
x | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | y | |
x | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
x1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
x2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
x3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
x4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
x5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
x6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
x7 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
x8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
x9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
x10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
x11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
x12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
x13 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
y | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Матрицей инцидентности графа G называется матрица S=[sij] размера nxm, где n – число вершин графа, а m – число дуг графа, в которой: