Но в это же время на судьбу нумерации значительное влияние оказали математики. В области вычислений требовались более удобные системы счисления и Ариабхата предложил записывать цифры санскритскими буквами.
Первое достоверное свидетельство о записи нуля относится к 876 г., в настенной надписи из Гвалиора (Индия) имеется число 270. Одни исследователи (Г. Фрейденталь) предполагают, что нуль был заимствован у греков, которые ввели в качестве нуля букву о в шестидесятиричную систему счисления, употребляемую ими в астрономии. В V в. в Индии появилась переводная греческая астрономическая литература. Освоение ее индийцами, возможно, повлияло и на перемену порядка следования цифр (от старших к младшим, как это было у вавилонян и греков) и на запись дробей, аналогичную их записи в эллинистическом Египте.
Другие (Дж. Нидэм), наоборот, считают, что нуль пришел в Индию с востока, он был изобретен на границе индийской и китайской культур. Обнаружены более ранние надписи от 683 и 686 гг. в нынешних Камбодже и Индонезии, где нуль изображен в виде точки и малого кружка. Те же доводы, что и у Фрейденталя (порядок следования разрядов, запись дробей, переводная литература), могут быть приведены в пользу не греческого, а китайского происхождения нуля.
На основе цифр брахми выработались современные индийские цифры «деванагари» (божественное письмо), применяющиеся в десятичной позиционной системе, от которой происходят десятичные позиционные системы арабов и европейцев.
Первым свидетельством об индийской десятичной позиционной системе являются слова сирийского христианского епископа Севера Себохта, жившего в одном из монастырей в верховьях Евфрата в VII в. В рукописи 662 г. Себохт писал: «Я не стану касаться науки индийцев... их системы счисления, превосходящей все описания. Я хочу лишь сказать, что счет производится с помощью девяти знаков ».
Мы называем изобретенные индийцами цифры 1, 2, .., 9 и нуль арабскими, так как заимствовали их у арабов, но сами арабы называли эти цифры индийскими, а арифметику, основанную на десятичной системе —«индийским счетом» (хисаб ал-Хинд).
Арифметические действия
Если наши геометрические курсы в значительной степени восходят к греческой математике, то наша арифметика имеет, несомненно, индийское происхождение. Именно от индийской позиционной нумерации происходит наша нумерация, индийцы же первые разработали правила арифметических действий, основанные на этой нумерации.
К основным арифметическим действиям индийцы относили сложение, вычитание, умножение, деление, возведение в квадрат и куб и извлечение квадратного и кубического корней.
Вычисления индийцы производили на счетной доске, покрытой песком или пылью, а то и прямо на земле. Поэтому арифметические вычисления иногда назывались «дхули-карма» — работа с пылью. Числа записывались заостренной палочкой. Чтобы хорошо различать цифры, их писали довольно крупно, поэтому промежуточные выкладки стирались. Это наложило отпечаток на индийские способы вычисления.
Сложение и вычитание производились как справа налево, т. е. от низших разрядов к высшим, так и слева направо, от высших разрядов к низшим.
Для умножения существовало около десятка способов. При основном способе умножения операцию можно было начинать как с низшего, так и с высшего разряда. В процессе умножения цифры множимого постепенно стирались, а на их месте записывались цифры произведения. Например, чтобы умножить 135 на 12 сначала писали
12
135
Перемножая 5*12 и стирая 5, получали
12
1360
и, сдвигая множитель
12
1360.
Перемножая 3*2 и добавляя 6 к 6, стирали 6 и записывали на ее месте 2, а единицу держали в уме или записывали в стороне. Эту единицу прибавляли к произведению 3*1 и сумму 4 писали внизу вместо стертой тройки
12
1460.
Далее перемножали 1*2 и прибавляли 2 к 4 внизу, т. е. стирали 4 и на ее месте писали 6. И, наконец, 1*1 = 1, поэтому 1 внизу не стирали. В заключение стирали множитель, и на доске оставалось произведение 1620.
Индийцы применяли и более удобные приемы умножения. Например, расчерчивали счетную доску на сетку прямоугольников, каждый из которых разделен пополам диагональю, по сторонам сетки записывали сомножители, а промежуточные произведения писали в треугольниках и складывали их по диагоналям.
При делении делитель подписывался под делимым так, чтобы первые их цифры находились одна под другой, и из цифр делимого, написанных над делителем, вычиталось максимальное кратное делителя, не превосходящее числа, образованного этими цифрами. Затем делитель передвигался на один разряд вправо и таким же образом вычитался из цифр остатка.
Существует несколько способов возведения в квадрат и куб. Шридхара в своей «Патиганите» («Искусство вычисления на доске») излагает методы, которые в наших обозначениях можно выразить формулами
Первое описание процесса извлечения квадратного и кубического корней встречается в Индии еще в V—VI вв. у Ариабхаты.
Индийцы называли корень «пада» — основание, сторона и «мула» — основание; оба эти слова, по-видимому, перевод греческих слов, применявшихся для обозначения квадратного корня. Так как слово «мула» имеет также значение «корень растения», арабские переводчики индийских сиддхант перевели в VIII в. этот термин арабским словом «джизр», также обозначающим корень растения. Поэтому латинские переводчики в XII в. перевели арабское название корня латинским словом radix, откуда и происходят наши термины «корень» и «радикал».
Извлечение квадратного корня в Индии, как и в Китае, основано на разложении квадрата двучлена, но при этом (как и при извлечении кубического корня) не применялся метод Горнера.
Так как при выполнении арифметических действий приходилось стирать промежуточные выкладки, проверить непосредственно, верны ли окончательные результаты, было невозможно. Для проверки умножения, деления, возведения в степень и извлечения корня индийцы рекомендовали не обратные операции, а так называемую проверку с помощью девятки, основанную на том, что остаток при делении целого числа на 9 равен остатку при делении на 9 суммы цифр этого числа. Первое описание этого правила применительно к умножению, делению с остатком и извлечению квадратного и кубического корней встречается у Ариабхаты II (X в.). Если мы назовем пробой остаток от деления на 9 суммы цифр данного числа, то, например, при умножении двух чисел проба произведения должна быть равна пробе произведения проб множителей. Равенство проб является только необходимым, но не достаточным условием правильности действия, чего индийцы не отмечают. Проверка с помощью девятки применялась математиками стран ислама, познакомившимися с ней по индийским источникам, а от арабов это правило попало к европейцам. Недостаточность этого правила отмечалась Н. Шюке и Л. Пачоли только в конце XV в.
Дроби
В Индии дроби известны очень давно. Еще в середине II тысячелетия до н. э. упоминаются такие дроби ардха (1/2), пада (1/4), три-пада (3/4) и кала (1/16).
Индийцы записывали дроби так, как это делается в настоящее время: числитель над знаменателем, только без дробной черты. Друг от друга дроби отделялись вертикальными и горизонтальными линиями. Так, дробь
записывалась ,где (как и в дальнейшем) буквы а, b стоят вместо конкретных цифр. Именно об этой записи дробей мы говорили выше, когда упоминали о влиянии на индийскую математику александрийских астрономов первых веков нашей эры и ученых Китая, так как эта запись встречалась и в позднегреческих папирусах и в китайских книгах. Сложение обозначалось записью дробей рядом. Для обозначения вычитания употреблялись точка или зпак + справа, и, например, выражение изображали в виде