Смекни!
smekni.com

Древняя и средневековая Индия (стр. 3 из 5)

В смешанной дроби
целая часть помещалась над дробью:

Иногда целое число изображали дробью со знаменателем 1. Поэтому смешанную дробь
можно было представить в виде

При умножении дроби записывали рядом:

а при делении — одну под другой:

Как видно, сложение и умножение дробей изображались одинаково. То же относится к делению целого числа а на дробь
, которое записывали
так же, как смешанную дробь. О смысле подобного рода записей можно было судить по контексту. Правила действий над дробями почти не отличались от современных. Так, Шридхара приводит правила: «[После приведения дробой] к общему знаменателю сложи числители», «Произведение дробей равно произведению числителей, деленному на произведение знаменателей», «Квадратный корень [дроби] равен квадратному корню числителя, деленному на квадратный корень знаменателя».

Для приведения к общему знаменателю индийские ученые сначала составляли произведение знаменателей всех сомножителей, а начиная с IX в. пользовались уже их наименьшим кратным. Так поступал, папример, Шридхара.

Задачи на пропорции

В индийских сочинениях встречаются многочисленные задачи па простое и сложное тройное правило, пропорциональное деление, правило товарищества, правило смешения, простые и сложные проценты, прогрессии. Одни задачи имели непосредственное практическое значение, другие составлялись для упражнения и развлечения.

При решении задач, которые выражаются уравнением ах = с, большое место занимало уже знакомое правило одного ложного положения (правило состояло в замене неизвестного произвольно взятым числом и в следующем за тем определении истинной величины неизвестного на основании пропорциональности, существующей между ним, его произвольным значением и соответствующими результатами указываемых условиями задачи вычислений.).

В анонимной рукописи VI—VIII вв., найденной близ селения Бахшали в Северо-Западной Индии (так называемая «Бахшалийская рукопись»), это правило применяется также к задачам, приводящимся к уравнению ax+b=c. Решение имеет вид

где c1=ax1+b.

Еще более широкое применение имело тройное правило («трай-рашика» — буквально «три места»), состоящее в нахождении числа х, составляющего с тремя данными числами а, b, с пропорцию

Это правило было известно еще египтянам и грекам, но индийцы выделили его как специальный арифметический прием и разработали схемы, позволяющие применять его к задачам, содержащим несколько величин, связанных пропорциями. На тройном правиле были основаны индийские правила 5, 7, 9 и т. д. величин (панча-рашика, сапта-рашика, нава-рашика и т. д.). Например, в правиле 5 величин требуется найти величину х по пропорциям

и ответ дается в виде

Индийцы пользовались также «обратным тройным правилом» (вьяста трай-рашика), когда в задаче вместо прямой пропорциональности указывается обратная. Эти правила также были заимствованы у индийцев учеными стран ислама, а через них — европейцами. В странах ислама правила 5,7, и т.д. величин были обобщены на любое нечетное число. В Европе эти правила, получившие название цепных правил, находились в центре внимания авторов арифметических руководств.

Алгебра

Как и в Вавилоне и Китае, в Индии высокого расцвета достигли алгебраические вычисления. Алгебру, вместе с решением целочисленных неопределенных уравнений, индийцы называли «биджаганита» — «искусство вычисления с элементами» или «авьяктаганита» — «искусство вычисления с неизвестными».

Выдающимся достижением индийских математиков было создание развитой алгебраической символики. Эта символика была даже богаче, чем у Диофанта. Впервые появились особые знаки для многих неизвестных величин, свободного члена уравнения, степеней. Большинство символов представляет собой первые слоги соответствующих санскритских терминов.

Неизвестную величину индийцы называли «йават-тават» (столько, сколько), для обозначения неизвестной служила буква, означающая слог «йа». Если неизвестных было несколько, то их называли словами, выражающими различные цвета: калака (черный), нилака (голубой), питака (желтый), панду (белый), лохита (красный), а обозначали первыми слогами соответствующих слов: ка, ни, пи, па, ло. Свободный член в уравнениях сопровождался первым слогом слова «руна» (целый). Иногда неизвестная обозначалась знаком нуля, так как первоначально в таблицах, например, пропорциональных величин, для нее оставлялась пустая клетка.

Знаки, представляющие собой обозначения первых слогов слов, применялись для основных действий. Сложение обозначалось знаком «йу» («йта» — сложенный), умножение — «гу» («гунита» — умноженный), деление — «бха» («бхага» — деленный).

Вычитание обозначалось точкой над вычитаемым или знаком + справа от него (например, вычитание 5 обозначалось 5 или 5+; выше это обозначение встречалось нам при вычитании дробей). Знаки сложения и умножения часто опускались. В качестве примеров

для

для

для

Обозначения степеней представляли собой сочетания слогов «ва» («варга» — квадрат), «гха» («гхана» — куб) и слова «гхата» — произведение, т. е. степени неизвестных обозначались:

Х2 = ва,

Х3 = гха,

Х4 = ва ва,

Х5 = ва гха гхата,

Х6 = ва гха,

Х7= ва ва гха гхата,

Х8 = ва ва ва ,

Х9 = гха гха.

Мы видим, что для степеней, показатели которых имеют вид 2α, Зβ, обозначения состоят из слога «ва», повторенного α раз, и слога «гха», повторенного β раз. Таким образом, степени этого вида образуются по мультипликативному принципу. Напротив, обозначения степеней, показатель которых не представляется в таком виде, образуются по аддитивному принципу, причем слово «гхата» (произведение) означает, что степень такого типа представляет собой произведение степеней, суммой показателей которых является показатель этой степени (например, х5 = х2+3 = x2x3). Следовательно, индийская символика принципиально отличается от символики Диофанта, где названия степеней были основаны на чисто аддитивном принципе.