и формулирует решение квадратного уравнения вида
с помощью правила
говоря, что «квадратный корень можно как прибавлять, так и вычитать». В нашем случае условиям задачи удовлетворяет только корень 48, так как корень
дробный.Бха скара уже формулирует условие существования двух положительных корней.
Индийцы решали и системы уравнений; например, Бхаскара решал задачу об определении катетов xиyи гипотенузы z прямоугольного треугольника по его периметру и площади, сводящуюся к системе
Бхаскара рассматривал также специально подобранные уравнения третьей и четвертой степеней, целочисленные корни которых он находил путем несложных преобразований. Так, уравнение
Бхаскара решает следующим образом: прибавляя к обеим частям
, он получаетИзвлечение корня из обеих частей дает
откуда
Площади и объемы
Сведения по геометрии имеются также в трактатах Брахмагупты, Магавиры, Шридхары, Бхаскары.
Брахмагупта приводит приближенное правило для вычисления площади произвольного четырехугольника как произведения полусумм противоположных сторон, с которым мы встречались в математике египтян и вавилонян.
Шридхара указывал, что это правило нельзя применять ко всем четырехугольникам. Он сообщает точное правило вычисления площади трапеции.
Брахмагупта для нахождения площади четырехугольника пользовался правилом, аналогичным правилу Архимеда — Герона для площади треугольника:
где а, b, с и d — стороны четырехугольника, а p — полупериметр. Это правило верно только для четырехугольников, вписанных в круг. Брахмагупта не оговаривает этого, но фактически рассматривает лишь два типа четырехугольников — равнобедренные трапеции и четырехугольники с пересекающимися под прямым углом диагоналями, для которых правило справедливо.
Геометрические доказательства крайне лаконичны, но нередко весьма наглядны. Так, для обоснования правила вычисления площади треугольника приводится рисунок, в котором высота прямоугольника равна половине высоты треугольника (рис. 4). Для обоснования предложения «Площадь круга равна площади прямоугольника,
рис.4 рис.5
стороны которого соответственно равны полуокружности и радиусу». Ганеша (XVI в.) делит круг на 12 равных секторов, а затем разворачивает каждый полукруг, состоящий из 6 секторов, в пилообразную фигуру, основание которой равно полуокружности, а высота — радиусу (рис. 5). Прямоугольник, о котором говорится в условии, получится при вставлении зубьев одной из «пил» в зазоры между зубьями другой. По-видимому, читатель должен был представить себе, что круг разделен не на 12, а на столь большое число секторов, что эти секторы станут неотличимы от треугольников, составляющих «пилы».
Приближенные выражения отношения длины окружности к диаметру мы находим уже в сиддхантах. В «Пулисе-сиддханте» (V в. н. э.) говорится, что длина окружности относится к диаметру, как 3927 к 1250, что соответствует значению π = 3,1416. То же значение π в виде
мы находим у Ариабхаты. Брахмагупта пользовался приближением
, возможно, китайского происхождения. Встречается у индийцев и приближение π = 22/7. В сиддхантах, как и у александрийских астрономов, окружность делится на 360 градусов, каждый градус — на 60 минут, но радиус делится не на 60 частей, а на 3438 минут. Это объясняется тем, что, если считать окружность равной 360 60 = 21 600 минутам, а π = 3,1416, то из соотношения С = 2πr, мы найдем, что r = 3437,7 минут. Как мы видим, индийцы измеряли радиус в долях окружности уже в V в., поэтому возможно, что приведенная выше «теорема Ганеши» была известна индийцам задолго до Ганеши. Возможно также, что в чертеже Ганеши предполагалось, что круг разделен на 3438 секторов.Шридхара приводит правила вычисления объема призмы V = SH, объема усеченного кругового конуса
и объема кругового конуса
.Бхаскара дает правило вычисления объема шара
где π = 3,1416.Значение математики Индии
Индийская математика оказала огромное влияние на развитие математики как на Востоке, так и на Западе. Именно в Индии была разработана наша арифметика, основанная на десятичной позиционной нумерации, а также такие арифметические правила, как тройное правило и его обобщения. Наши термины «корень» и «синус» постоянно напоминают нам о роли индийских ученых в разработке алгебры и тригонометрии. Оказали влияние на Европу и их теоретико-числовые исследования. В значительной степени индийцам обязаны мы и введением отрицательных и иррациональных чисел. К сожалению, математические и астрономические труды индийцев, написанные в XV—XVII вв., и в частности такое замечательное открытие, как бесконечные ряды для арктангенса, синуса и косинуса, остались в свое время неизвестными за пределами Индии и были получены вновь европейцами.
Несомненно, что вклад индийцев в развитие мировой математики был бы во много раз больше, если бы Индия не попала на несколько столетий под колониальное иго. Об этом свидетельствует деятельность замечательного индийского математика Сринивасы Рамануджана (1887 — 1920), который в весьма трудных условиях смог стать одним из крупнейших специалистов по теории чисел.