Смекни!
smekni.com

Электрическая сеть района системы 110 кВ (стр. 3 из 9)

Q4 =

Мвар

Определяем потери мощности в обмотках трансформаторов, с учетом того, что нагрузка распределяется одинаково на два трансформатора.

[2, с.247, ф.11-9,11-10]

Sm1=0,06×(10,12/10)2/2+j10,5×10,122/(200×10) = 0,031+j0,538 МВА

Sm2=0,09×(16,867/16)2/2+j10,5×16,8672/(200×16) = 0,050+j0,934 МВА

Sm3=0,16×(48,41/40)2/2+j10,5×48,412/(200×40) = 0,117+j3,076 МВА

Sm4=0,12×(27,072/25)2/2+j10,5×27,0722/(200×25) = 0,070+j1,539 МВА

Определяем приведенную мощность без учета потерь холостого хода

S`пр=S+DSm

S`пр1=(8,4+j5,645)+j(0,031+j0,538)=(8,431+j6,183) МВА

S`пр2=(14+j9,408)+j(0,050+j0,934)=(14,05+j10,342) МВА

S`пр3=(40,18+j27,001)+j(0,117+j3,076)=(40,297+j30,077) МВА

S`пр4=(22,47+j15,1)+j(0,070+j1,539)=(22,54+j16,639) МВА

Определяем потери мощности на холостом ходу

[2, с.246, ф.11-7]

DS1 = 2×0,014+j(2×09×10/100) = (0,028+j0,18) МВА

DS2 = 2×0,021+j(2×0,8×16/100) = (0,042+j0,256) МВА

DS3 = 2×0,042+j(2×0,7×40/100) = (0,084+j0,56) МВА

DS4 = 2×0,025+j(2×0,75×25/100) = (0,05+j0,375) МВА

Определяем мощность, приведенную к высшей стороне

Sпр=S`пр+

Sхх

Sпр1 = (8,431+j6,183)+j(0,028+j0,18) = (8,459+j6,363) МВА

Sпр2 = (14,05+j10,342)+j(0,042+j0,256) = (14,092+j10,598) МВА

Sпр3 = (40,297+j30,077)+j(0,084+j0,56) = (40,381+j30,637) МВА

Sпр4 = (22,54+j16,639)+j(0,05+j0,375) = (22,590+j17,014) МВА

Результаты расчетов сводим в таблицу 3.1.

Таблица 3.1.

ПС

Тип трансформатора

кол-во

P

Q

DPm

DQm

P'пр

Q'пр

DPxx

DQxx

Pпр

Qпр

-

-

-

-

МВт

Мвар

МВт

Мвар

МВт

Мвар

МВт

Мвар

МВт

Мвар

1

ТДН-10000/110

2

Максимальный режим работы сети

12

6,801

0,057

0,999

12,057

7,800

0,028

0,18

12,085

7,980

2

ТДН-16000/110

2

20

11,335

0,093

1,734

20,093

13,069

0,042

0,256

20,135

13,325

3

ТРДН-40000/110

2

57,4

32,530

0,218

5,713

57,618

38,243

0,084

0,56

57,702

38,803

4

ТРДН-25000/110

2

32,1

18,192

0,131

2,859

32,231

21,051

0,05

0,375

32,281

21,426

1

ТДН-10000/110

2

Минимальный режим работы сети

8,4

5,645

0,031

0,538

8,431

6,183

0,028

0,18

8,459

6,363

2

ТДН-16000/110

2

14

9,408

0,050

0,934

14,050

10,342

0,042

0,256

14,092

10,598

3

ТРДН-40000/110

2

40,18

27,001

0,117

3,076

40,297

30,077

0,084

0,56

40,381

30,637

4

ТРДН-25000/110

2

22,47

15,100

0,070

1,539

22,540

16,639

0,05

0,375

22,590

17,014

Составляем Г-образную схему замещения трансформатора на которой в верхней строке показываем мощности соответствующие минимальному режиму, а в нижней строке показываем мощности соответствующие максимальному режиму работы.



4. РАЗРАБОТКА ВАРИАНТОВ СХЕМ ЭЛЕКТРИЧЕСКОЙ СЕТИ РАЙОНА СИСТЕМЫ

Предлагаемые варианты схем электрической сети должны в одинаковой степени отвечать требованиям надежности электроснабжения и в тоже время по возможности меньше требовать для своего исполнения коммутационной аппаратуры и протяженности линий. Разработка вариантов ведется комплексно, то есть схема сети намечается с учетом схем коммутации подстанций, числа присоединений, взаимного географического положения подстанций, баланса мощностей района.

По заданным координатам подстанций в масштабе М1:106 (в 1 мм – 1 км) найдем место расположения подстанций и наметим два различных варианта схемы электрической сети.

В первом варианте примем разомкнутую сеть. При питании подстанций с ответственными потребителями от разомкнутой сети, необходимо питать их от двух линий. Линия С-3 и одноцепная, так как связь с другим районом обеспечивает надежность питания подстанции.

Во втором варианте примем простую замкнутую сеть с одноцепными ЛЭП.

ВАРИАНТ 1. ВАРИАНТ 2.


Рис.4.1 рис. 4.2

5. ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ СЕТИ ДВУХ ВАРИАНТОВ В МАКСИМАЛЬНОМ РЕЖИМЕ ДО ОПРЕДЕЛЕНИЯ ПОТЕРЬ И УРОВНЕЙ НАПРЯЖЕНИЯ

5.1. Расчет первого варианта.

5.1.1. Расчет линии 2-1.

Линия двухцепная, длиной 18 км. Uном=110 кВ.

Мощность в конце линии 2-1 равна Sпр.пс1 плюс мощность, уходящая в другой район системы. S2=Sпр.пс1+S

S2 = 12,085+j7,98+10+j4= 22,085+j11,98=

= 25,125 МВА

Определяем ток линии

Так как линия двухцепная, то ток нормального режима в одной цепи равен

Iнорм.р = 131,8/2 = 65,9 А

Определяем расчетный ток при выборе сечений проводов методом экономических интервалов

Iр = Iнорм.р×ai×aT = 65,9×1.05×1 = 69,2 А

ai – коэффициент, учитывающий изменение нагрузки по годам, который для линий 110-220 кВ можно принять равным 1,05; что соответствует математическому ожиданию этого коэффициента в зоне наиболее часто встречающихся темпов роста нагрузки.

aT – коэффициент, зависящий от времени использования максимальной нагрузки, номинального напряжения линии и коэффициента участия в максимуме нагрузки.

Принимаем железобетонные опоры типа ПБ-110-4, и по [5.с.280.] для III района по гололеду выбираем сечения проводов в каждой цепи 95 мм2 с предельной экономической нагрузкой на одну цепь 80 А.

Принимаем провод АС-95/16 с допустимым током I0ДОП=330 А, что больше тока нормального режима работы и тока общей нагрузки I=131,8 А, который будет проходить в одной цепи, при отключении другой. Ro=0.299 Ом/км, d=13,5 мм. Конструктивная схема принятой опоры для расчета среднего геометрического расстояния между фазами представлена на рисунке 5.1.

Определяем индуктивное сопротивление на один километр

. [2.с.70.ф.3-6]

2 м