Смекни!
smekni.com

Численные методы и их реализация в Excel (стр. 3 из 4)

Excel обладает мощным встроенным средством для нахождения экстремальных значений функции одной или нескольких переменных. Для одно-экстремальных функций можно найти безусловный глобальный экстремум. Для многоэкстремальных функций можно найти условный локальный экстремум. Забегая вперед отметим, что для многоэкстремальных функций определить какой из локальных экстремумов будет найден невозможно без построения графика функции на интересующем нас интервале, так как численные методы нахождения экстремума ориентированы на поиск ближайшего решения к точке начального приближения и вообще говоря, требуют унимодальности функции.

Посмотрим различные примеры поиска экстремальных значений функции.

Задание6

Найти минимум и максимум функции на интервале, построить график.

2.

Рис.19

Для поиска безусловного экстремума функции сформируем лист электронной таблицы, как показано на рисунке 20. Функцию (6) запишем в клетку А2 где вместо переменной х следует указать адрес ячейки А1, которая содержит начальное приближение экстремума равное, например 0.

Для поиска минимума следует выполнить следующую последовательность действий:

1.Выполнить команду Сервис/Поиск решения…(получим лист электронной таблицы, как показано на рис.20).

2.Заполнить диалоговое окно Поиск решения… рис21

2.1.Щелкнуть левой клавишей мыши в поле. Установить целевую ячейку и щелкнуть на ячейке с формулой, в нашем случае это ячейка А2, абсолютный адрес которой. $А$2 появится в поле.

2.2. Выбрать поле Минимальное значение.

2.3. В поле. Изменяя ячейки ввести адреса ячеек, значения которых будут варьироваться в процессе поиска решения. В нашем случае это клеикаА1, абсолютный адрес которой. $А$1.

После выполнения пунктов 1-2 лист электронной таблицы будет выглядеть так, как показано на рис 21.

После щелчка на кнопке Выполнить получим решение поставленной задачи. В клетке А1 находится значение переменной Х равное 0.769231 при котором функция (5 ) достигает минимального значения равного –167,692. Рис22

Условный экстремум

Для функции одной переменной поиск экстремума возможен как на всей числовой оси, так и на некотором интервале, поиск на интервале уже можно считать поиском условного экстремума функции, т.к появляются ограничения на изменение значений аргумента.

На рис.21 в диалогом окне Поиск решения есть поле Ограничения м соответствующие ему команды: Добавить, Заменить, Удалить.

Рассмотрим предыдущую задачу, добавив условие поиска минимального значения на интервале [1;5]. Тогда диалоговое окно Поиск решения… следует видоизменить, добавив ограничения:

Щелкнув левой клавишей мыши в поле Ограничения и затем на кнопке Добавить , откроем диалоговое окно Добавление ограничения. Рис23,,,.. которое следует заполнить так как показано на рисунке.

После добавления последнего ограничения диалоговое окно Поиск решения…будет содержать математическую постановку задачи экстремума и выглядит след.образом.
После щелчка на кнопке Выполнить получим следующее решение:

У=-167 при х=1, отличающееся от решения, полученного в предыдущем случае. Здесь в качестве минимального значения выступает наименьшее значение функции на интервале[1;5], совпадающее с левой границей интервала.

Все численные методы нахождения оптимальных значений для корректной работы требуют ,чтобы функция на интервале была унимодальной.

При такой постановке задачи значения труда и капитала определяется как 5 и 2 единицы соответственно. Получающиеся значение целевой функции при этом равно 3.37. Теперь можно построить график, на котором отражены линия безразличия использования труда и капитала при выпуске 3.37 и линия ограничения на средства, предназначенные для расходов на труд и капитал.

Полученные кривые касаются в найденной точке, что согласуется с теорией фирмы. Рис 31


3.4 Математическое программирование

Различные методы оптимального управления, получившие заметное развитие во второй половине двадцатого века, благодаря созданию и распространению компьютерной техники, не только отвечают насущным потребностям экономической науки, но и начинают играть роль важнейшего ее составного элемента. И это вполне естественно, поскольку одной из главных задач экономической науки является разработка теоретического фундамента управления, т.е. методов наилучшего распределения ограниченных ресурсов (людских, материально -вещественных, финансовых, временных) для поддержания функционирования и развития предприятия или экономики страны.

Однако, чтобы обнаружить глубинную связь между математическим программированием и экономической наукой, понадобились усилия многих ученых.

Анализируя возможности Поиска решения … можно заметить, что он применим для решения достаточно широкого класса задач математического программирования.

Если задачу принятия решений в области управления можно сформулировать в виде подчиненных m произвольным ограничениям.

при

……………………

gm(x1,x2,…,xn)

0

то Поиск решения… позволяет найти решение такой задачи, которая в формальной постановке может быть задачей:

1. линейного программирования

2. нелинейного программирования

3. целочисленного программирования

4. частично целочисленного программирования

Кроме того у лиц, принимающего решения есть возможность изменить параметры работы Поиска решения…, повышающие эффективность поиска оптимального решения. Рис.32

3.4.1. Линейное программирование

Найти минимум функции F=5x1+x2
min

при ограничениях:

3x1+4x2
12

-2x1+x2

x1-2x2

x1+x2
x1,x2 – произвольные

Сформируем страницу электронной таблицы и постановку задачи линейного программирования в диалоговом окне Поиска решения…

После выполнения поставленной задачи получаем следующее значение переменных

Как видим, при найденных значениях x1,x2 целевая функция принимает минимальное значение, равное –9.66 и этим удовлетворяются все ограничения поставленной задачи.

Графическое решение поставленной задачи выглядит так:

Задание 7

Решить задачу линейного программирования с помощью Поиска решения…, показать графически область допустимых решений и целевую функцию.

2.F=-x1+4x2

при

3x1+2x2

2x1-x2

-3x1+2x2

x1+2x2

x1