Наиболее напряжёнными деталями турбины являются рабочие лопатки, особенно лопатки регулирующих ступеней, ступеней, примыкающих к камерам отборов, последних ступеней. Поэтому в первую очередь необходимо знать, как изменяется напряжённость рабочих лопаток при изменении режима. Вторым узким местом в турбине является её упорный подшипник, надёжность работы которого при нормальной эксплуатации определяется осевыми усилиями, приложенными к ротору. При отдельных режимах слабыми могут оказаться и другие детали турбоустановки, например, диафрагмы, валопровод, подшипники, паропровод.
Снижение экономичности турбоустановки и турбины при переходе на частичный режим работы является, как правило, неизбежным, и вопрос состоит только в том, как необходимо осуществлять частичные режимы, с тем, чтобы потеря в экономичности была минимальна.
При переменном пропуске пара через отсек турбины изменение давления и температуры перегретого пара перед и за ним приближённо подчиняется формуле Флюгеля-Стодолы:
G / G0 = ÖT00 / T01 Öp201 /p200 – p2=1 / p2=0, (1)
Где p00, T00 – давление и температура перед отсеком; p=0 – давление за отсеком при некотором, например, номинальном попуске пара G0; p01; T00;– те же величины для расхода пара G на изменном режиме.
Поскольку параметры пара G0, p00, T00, p=0 для номинального режима известны и могут рассматриваться как постоянные, то видно, что соотношение (1) связывает четыре величины для изменного режима: расход пара G, давление p01, температуру T01, перед отсеком и давление за отсеком p=1. Три этих величины могут быть заданы, а четвёртая определиться соотношением (1).
Соотношение (1) справедливо при одном условии: при двух сравниваемых режимах рассматриваемые отсеки (или вся турбина) должны иметь одни и те же проходные сечения.
Во многих случаях отношение абсолютных температур в проточной части изменяется мало, поэтому T00 » T01 и формула (1) может быть упрощена. Для конденсационного режима для всех отсеков, начиная с регулирующей ступени, p22 << p20, и тогда приближённо верно соотношение:
G / G0 = p01 /p00, (2)
Т.е. в проточной части турбины при конденсационном режиме давления пара в ступенях пропорциональны расходу пара.
Для турбин с противодавлением отклонения от пропорциональности тем больше, чем выше противодавление и чем ближе рассматриваемая ступень к концу турбины.
При работе турбины при теплофикационном режиме пропорциональность давление в ступенях и расходе пара на турбину нарушается в тем большей степени, чем ближе ступень расположена к регулируемому отбору пара и чем выше давление в отборе.
Таким образом, при изменении пропуска пара через турбину изменяются параметры перед и за ступенью, что в общем случае приводит к изменению теплоперепада ступени; это влечёт за собой изменение треугольников скоростей, отклонение отношения скоростей Xф от оптимального и снижение КПД ступени.
При изменении расхода пара через группу ступеней изменяются их теплоперепады, однако это в основном относится к последней или нескольким последним ступеням группы. Все остальные ступени работают практически с неизменными теплоперепадами.
Для всех ступеней отсека, кроме нескольких последних, при изменении пропуска пара отношение Xф остаётся практически постоянным, и поэтому их КПД не изменяется.
Отсюда также следует ряд важных выводов, определяющих надёжность работы теплофикационной турбины.
Если теплофикационная турбина работает на конденсационном режиме и расход через ЦНД увеличится сверх расчетного (например, из-за отключения ПВД), то теплоперепад последней ступени возрастает в наибольшей степени, и она окажется перегруженной.
Если теплофикационная турбина работает по теплофикационному графику и одноступенчатом нагреве сетевой воды, то при увеличении тепловой нагрузки расход пара через промежуточный отсек увеличивается, и теплоперепад его последней ступени (её часто называют «предотборной») увеличиться в наибольшей степени.
Особенно сложно изменяются теплоперепады ступеней промежуточного отсека при двухступенчатом нагреве сетевой воды, когда изменение давлений перед отсеком и за ним зависит от многих факторов, в частности, от расхода и температуры обратной сетевой воды.
Другой важный вывод состоит в том, что при изменении отношения скоростей Xф изменяется реактивность r. Увеличение реактивности при том же давлении за ступенью приводит к увеличению осевого давления на диск соответствующей ступени.
При уменьшении отношения скоростей Xф, вызванном увеличением теплоперепада ступени и P2 = const, осевое давление на диск уменьшается.
Таким образом, при изменении расхода пара через группу ступеней осевое усилие, действующее на рабочие диски и рабочие лопатки этой группы, изменяется пропорционально расходу пара.
Приведённые положения теории переменного режима позволяют рассмотреть работу теплофикационных турбин различного типа при переменном пропуске пара.
Работа турбины при переменном режиме с постоянным начальным давлением
Рассмотрим переменный режим турбин, у которых при изменении нагрузки начальные параметры пара остаются неизменными. Рассмотрим сначала работу турбины, не имеющей отборов пара на регенеративные подогреватели в конденсационном режиме. В такой турбине из-за малого давления в конденсаторе давления в ступенях будут прямо пропорциональны расходу свежего пара. Таким образом, давление в камере регулирующей ступени будет изменяться пропорционально расходу пара, что, однако, приведёт к существенному изменению теплоперепада только последней или нескольких последних ступеней.
При увеличении расхода пара давление в камере регулирующей ступени повышается, суммарный теплоперепад всех нерегулируемых ступеней также увеличивается, однако это произойдёт в основном за счёт увеличения теплоперепада последней ступени. Поскольку давление в камере регулирующей ступени возросло, теплоперепад регулирующей ступени уменьшился. Таким образом, оказывается, что почти все нерегулируемые ступени, кроме последней, выработают дополнительную мощность в соответствии с возросшим расходом пара, а последняя – в соответствии с возросшим расходом пара и теплоперепадом. Такое увеличение мощности возможно только за счёт увеличения окружной силы, вращающей колесо турбины. Таким образом, окружная сила, изгибающая рабочую лопатку в плоскости колеса, с ростом расхода пара увеличивается.
В результате оказывается, что при увеличении расхода пара через турбину рабочие лопатки последней ступени перегружаются и за счёт увеличения теплоперепада. Поскольку рабочие лопатки последней ступени и так работают почти на пределе своей механической прочности, то даже небольшое увеличение расхода пара угрожает их надёжности. Кроме того, увеличение расхода пара приводит к пропорциональному росту осевого усилия и увеличению нагрузки на колодки упорного подшипника.
Поэтому увеличение мощности теплофикационной турбины сверх номинальной при работе в конденсационном режиме может производиться эксплуатационным персоналом строго в рамках пределов.
Всё изложенное можно легко видоизменить, чтобы провести анализ работы отсека турбины при уменьшении расхода пара: разгрузка турбины происходит в большей степени за счёт разгрузки последней ступени, которая при этом попадает в более благоприятные условия работы.
Рассмотрим теперь работу первой ступени турбины. Если турбина имеет дроссельное парораспределение, то первую ступень турбины можно рассматривать вместе с остальными, т.е. можно включать в группу ступеней, и все полученные выше выводы сохранятся. Но это нельзя делать при сопловом парораспределении, когда парциальность регулирующей ступени изменяется при изменении расхода пара.
Особенность работы регулирующей ступени состоит в том, что в общем случае изменяется давление и за ней (в камере регулирующей ступени), и перед ней (вследствие дросселирования пара в регулирующем клапане), несмотря на то, что давление пара перед регулирующими клапанами можно считать постоянными.
На рис. 11.6 показаны диаграммы изменений расхода пара через отдельные группы сопл и изменения давлений в регулирующей ступени для турбины с четырьмя регулирующими клапанами при изменении расхода через турбину.
Диаграмма на рис. 11.6, а позволяет определить, в каком положении находятся регулирующие клапаны при выбранном расходе пара. Например, расход пара, равный половине номинального (точка D), обеспечивается одним не полностью открытым клапаном; номинальный режим (точка A) обеспечивается при полном открытии трёх клапанов, а открытием четвёртого регулирующего клапана можно осуществить перегрузку турбины в допустимых пределах.
Диаграмма на рис. 11.6, б позволяет определить, как изменится давление. При номинальном режиме, если пренебречь дросселированием в первых трёх регулирующих клапанах, т.е. если считать, что давление перед соответствующими группами совпадает с давлением свежего пара (точки 1, 2 и 3), давление в зазоре между сопловой и рабочей решётками изображается точкой A, а за ступенью – точкой A¢. При этом (рис. 11.6, а) первый клапан обеспечивает 50% расхода, второй – 26%, а третий – 24%.
Посмотрим, как изменяются условия работы при увеличении расхода пара, например на 10% (точка E). В этом случае давление пара в камере регулирующей ступени увеличится также на 10% (точка K¢), а теплоперепад, относящийся к потокам пара, проходящим через первые три регулирующих клапана, уменьшится. Уменьшится и расход пара через эти клапаны, как видно из рис. 11.6, а (хотя суммарный расход за счёт открытия четвёртого клапана увеличится). Поэтому, когда рабочие лопатки при своём вращении будут проходить перед первой, второй и третьей сопловыми группами, на них будет действовать меньшее усилие при расходе пара 110%, чем при расходе пара 100%. Таким образом, увеличение расхода пара через ЦНД турбины сверх номинального приводит к уменьшению напряжений в лопатках регулирующей ступени.