Мир Знаний

Методология определения инновационного потенциала экономической среды (стр. 2 из 3)

Методика с использованием кластерного анализа. Главное назначение кластерного анализа - разбиение множества исследуемых объектов и признаков на однородные группы, или кластеры. Методы кластерного анализа можно применять в самых различных случаях, даже в тех, когда все сводится к образованию групп просто по количественному сходству [7]. Заметим, что важное преимущество кластерного анализа состоит в том, что он позволяет проводить разбиение объектов не по одному признаку, а по целому их набору. Кроме того, кластерный анализ в отличие от большинства методов не накладывает никаких ограничений на вид рассматриваемых объектов и позволяет рассматривать множество разнородных исходных данных [8].

С помощью методики с использованием кластерного анализа данные последовательно объединяются в кластеры. На основании матрицы расстояний группируются наиболее близкие объекты. Таким образом, образуются кластеры с самыми высокими показателями, самыми низкими и т. д. В данной работе регионы РФ были классифицированы по уровню научно-инновационного потенциала за 2000-2006 гг. с использованием данных по следующим основным социально-экономическим показателям [9]:

удельный вес организаций, осуществлявших технологические инновации, %;

объем инновационных товаров (работ, услуг), % от общего объема отгруженных товаров (работ, услуг);

внутренние текущие затраты на исследования и разработки, % к валовому региональному продукту;

удельный вес исследователей, занятых исследованиями и разработками, в общей численности занятых в экономике;

удельный вес исследователей с учеными степенями, занятых исследованиями и разработками, в общей численности занятых в экономике;

количество выданных патентов на 10000 занятого населения;

число использованных передовых производственных технологий на 10000 предприятий;

отношение численности докторов наук ко всем лицам, имеющим высшее образование;

отношение численности кандидатов наук ко всем лицам, имеющим высшее образование;

отношение объема инновационной продукции к затратам;

удельный вес числа организаций, выполнявших исследования и разработки, % к общему числу организаций.

Кластерный анализ проводился методом Уорда [7] - наиболее часто применяемым в кластерном анализе и базирующимся на средних величинах. Для каждого кластера рассчитывалась квадратичная евклидова дистанция от средних величин переменных внутри кластера и средних величин переменных, присоединяемых к нему.

Графическое изображение результатов этого метода позволило сделать вывод о том, что всю совокупность наблюдений по перечисленным выше показателям в разрезе регионов РФ можно разбить на шесть кластеров [10].

Таким образом, исследование, проведенное методом кластерного анализа, дало возможность классифицировать типы регионов и оценить однородность исследуемой совокупности.

В табл. 1 приведены средние значения уровня инновационного развития по кластерам для 2000 г. Как видно, наиболее высокие безразмерные показатели уровня инновационного потенциала имеют кластеры 1 и 4.

Таблица 1

Средние значения по кластерам для 2000 г.

Кластер 1

Кластер 2

Кластер 3

Кластер 4

Кластер 5

Кластер 6

52,59176

33,09462

18,08682

108,6684

11,55656

3,745411

Выявленные нами кластеры включают в себя следующие регионы:

Кластер 1: Калужская область; Тульская область; Новгородская область; Республика Башкортостан; Томская область.

Кластер 4: Удмуртская Республика; Нижегородская область.

Средние значения по кластерам для 2005 г. приведены в табл. 2. Наибольшими среди них являются значения для кластеров 1 и 6.

Таблица 2

Средние значения по кластерам для 2005 г.

Кластер 1

Кластер 2

Кластер 3

Кластер 4

Кластер 5

Кластер 6

76,85298182

56,74207

34,74892

20,3611

6,913776

172,7241

Ниже перечислены регионы, входящие в отобранные кластеры:

Кластер 1: Калужская область; Новгородская область; Республика Мордовия; Удмуртская Республика; Кировская область; Саратовская область; Ямало-Ненецкий автономный округ; Республика Саха (Якутия).

Кластер 6: Тульская область; Нижегородская область.

И, наконец, кластерный анализ данных за 2006 г. выявил следующие кластеры (табл. 3).

Таблица 3

Средние значения по кластерам для 2006 г.

Кластер 1

Кластер 2

Кластер 3

Кластер 4

Кластер 5

Кластер 6

208,4257273

87,83382

61,91567

39,54194

23,10005

10,33654

Кластеры с наиболее высокими значениями включают следующие регионы:

Кластер 1 : Калужская область; Тульская область; Нижегородская область.

Кластер 2: Московская область; Вологодская область; Новгородская область; Республика Мордовия; Удмуртская Республика; Саратовская область; Ямало-Ненецкий автономный округ.

На основе проведенного анализа можно отметить, что отслеживаемый Росстатом набор статистических показателей, определяющий компоненты инновационного потенциала, не позволяет получить четко выраженные региональные кластеры, поскольку получившиеся в результате анализа матричные расстояния между отдельными регионами незначительны. В кластерном анализе объект выборки рассматривается как отдельный кластер, а процесс объединения, как говорилось выше, происходит последовательно - на основании матрицы расстояний объединяются наиболее близкие объекты. Если матрица сходства первоначально имеет размерность (M х M), то полностью процесс кластеризации завершается за (M - 1) шагов, но если матричные расстояния малы, то четкие границы определить невозможно. В этом случае деление на кластеры имеет достаточно субъективный характер. Это также подтверждается незначительными расхождениями в результатах, получаемых другими исследователями по методике кластерного анализа (см., например, [11-13]).

Подходы к оценке инновационного потенциала, используемые рейтинговыми агентствами. Как правило, рейтинговые агентства для оценки инновационного потенциала используют метод экспертных оценок и в конечном счете вычисляют интегральные показатели уровня инновационного потенциала. В этом смысле используемая в исследовании методика в концептуальном плане повторяет имеющиеся разработки. Однако сравнить их на более содержательном уровне не представляется возможным, поскольку круг отслеживаемых агентствами показателей, как и присваиваемые экспертами веса, остаются закрытыми для широкой общественности. По утверждению разработчиков методик, это является их коммерческим ноу-хау.

Ниже приведены оценки уровня инновационного развития регионов РФ, рассчитанные рейтинговым агентством «Эксперт» (табл. 4), которое, на наш взгляд, является наиболее авторитетной организацией в данной области. В этой связи именно их оценки сравниваются ниже с результатами оценок инновационного потенциала, полученными нами на основе использования двух описанных выше методик.

Таблица 4

Регионы с наибольшими предпосылками для инновационного развития (по расчетам РА «Эксперт»)*

Регион (субъект Федерации)

Доля инновационного потенциала в совокупном потенциале региона, %

2000 г.

2005 г.

2006 г.

Нижегородская обл.

20,0

25,2

23,7

Калужская обл.

17,0

22,6

21,3

Московская обл.

16,8

22,0

19,1

Томская обл.

16,9

21,7

22,0

Новосибирская обл.

14,0

18,6

19,2

С.-Петербург

14,0

16,3

21,1

Владимирская обл.

12,6

15,3

14,2

Воронежская обл.

12,1

15,2

15,0

Москва

12,0

15,2

13,5

Ульяновская обл.

9,0

14,4

14,6

Тульская обл.

10,0

14,3

13,9

* Совокупный инновационный потенциал региона формируется из восьми частных потенциалов, каждый из которых в свою очередь характеризуется целой группой показателей (более подробную информацию можно найти на официальном сайте рейтингового агентства РА-Эксперт) [14]. Доля инновационного потенциала в совокупном потенциале региона характеризует, какую часть инновационный потенциал региона занимает в совокупном потенциале каждого региона. Соответственно чем больше доля, тем выше инновационный потенциал.

В концептуальном плане методика агентства «Эксперт» выглядит следующим образом. Интегральный показатель инновационного потенциала рассчитывается как взвешенная сумма частных показателей. Оценка весов вклада каждой составляющей в совокупный потенциал получается в результате анкетирования, проведенного среди экспертов из российских и зарубежных инвестиционных, консалтинговых компаний и предприятий. (По специально разработанной анкете было опрошено около 200 чел.).

Сравнение результатов для 2000, 2005 и 2006 гг. и анализ использованных методик. Выявленные на основе различных методик регионы России с наиболее высоким уровнем инновационного потенциала представлены в табл. 5 (в 1-м и 3-м столбцах регионы упорядочены по уровню инновационного потенциала в порядке убывания значений этого показателя).

На основе сравнения результатов было установлено, что полученные с помощью метода кластерного анализа данные существенно отличаются от данных, полученных с помощью двух других методик.

Заметим при этом, что кластерный анализ не оценивает инновационный потенциал, а располагает регионы с различными показателями в кластеры, из-за чего отсутствует возможность точного определения инновационного потенциала (повышение или понижение) за определенный период времени.

Таблица 5

Регионы РФ с наиболее высоким уровнем развития инновационного потенциала

Метод экспертных оценок с использованием инте-

Метод кластерного анализа

Методика РА «Эксперт»

грального показателя

2000 г.

Москва

Нижегородская обл. Пермский край Московская обл. С.-Петербург Самарская обл. Калужская обл. Тульская обл. Томская обл. Свердловская обл. Челябинская обл.

Калужская обл. Тульская обл. Новгородская обл. Республика Башкортостан Томская обл. Удмуртская Республика Нижегородская обл.