Смекни!
smekni.com

Распознавание речи (стр. 2 из 2)

Другой пример, показывающий необходимость применения сфокусированного поиска, может быть представлен в восприятии конечного согласного. Среди многих ключевых слов для распознавания конечного согласного существует спектральная природа шума, воспроизводимого при освобождении конечной перемычки и перехода резонанса второй форманты в гласный, следующий за этой перемычкой. Многие исследователи изучали эти влияния, и результаты их исследований показали, что ограничивающее влияние обоих вышеописанных характеристик на восприятие варьируется природой следующего гласного, и следовательно, мощная стратегия распознавания должна иметь некоторые знания о твердой позиции гласного перед конечным согласным перед тем, как будет сделано само распознавание конечного согласного. Конечные согласные дают яркий пример весьма интересного комплекса фонетики, используемого для лингвистической окраски. Например, при рассмотрении слов rapid и rabid обнаруживается 16 фонетический различий.

Кроме сегментного и слогового уровней существуют ограниченные влияния из-за структуры морфем, которые являются минимальными синтаксическими единицами языка. Они включают в себя приставки, корни, суффиксы. Можно себе представить, что это синтаксис на слоговом и на морфемном уровнях, также как и нормально распознанный синтаксис, характеризующийся способом, в котором английские слова объединяются во фразы и предложения. Возможно представить данные ограничения как последствия рассмотрения грамматики вне контекста. В этом виде ограничений много “шумных” вариаций сегментов речи, которые так же относятся и к иерархическим синтаксическим ограничениям.

Дополнительные ограничения на природе входа новой лексики в язык могут являться уровнем слова. Многие исследования обнаружили, что характеристика слов при введении разбиения на 5 жестких классов фонетических сегментов может быть сокращена до минимума, часто имея единственное в своем роде распознавание. Далее слишком усиливается эффект порядка двух букв и фонетических сегментов с тех пор как в изучении английских и французских словарей было обнаружено, что более 90% слов имели единственное значение и только 0,5% имели 2 и больше альтернатив. На фонемном уровне было обнаружено, что все слова в английском словаре из 20 тысяч слов имели одно значение из-за беспорядочных фонемных пар. Этот пример помогает показать, что все еще существует ограничивающее влияние на лексическом уровне, которое еще не определено в современных системах распознавания речи. Естественно, что исследования в этой области продолжаются.

Кроме уровня слов синтаксис имеет дополнительное ограничительное влияние. Его влияние на последовательный порядок слов часто характеризуется в системах фактором, который в свою очередь характеризует количество возможных слов, которые могут следовать за предыдущим словом в процессе произнесения. Синтаксис также имеет ограничительные влияния на просодические элементы, такие как ударение, например в случае, когда ударение слов в incline и survey варьируется в зависимости от части речи. Возможно для того, чтобы охарактеризовать ударение в слове, нужно принять во внимание не только индивидуальное слово, но вышеприведенные дополнительные ограничения синтаксиса.

Далее, кроме синтаксического уровня ограничения доминируют над семантикой, прагматикой и речью, что плохо осознается людьми, однако имеет очень важное значение для процесса распознавания.

Несмотря на сложность описания характеристик источников различных ограничений, немаловажную роль играют современные системы влияния, которые представлены всеми возможными вариантами произнесения звуков. Например, система HARPI университета Сarnegie-Mellon University является системой, в которой звуковоспроизведение описывается как путь через комплексную сеть. В этом способе ограничения структуры слога, слова и синтаксиса связаны одной структурой. Структура контроля, используемая для поиска, является адаптацией динамичной программной техники. Более сильный подход был предложен моделями использования цепей Маркова. Эти модели использовались как единая структура, где возможности могут быть точно изучены экспериментальным путем. Закодированные представления спектральной трансформации воспроизводства речи используются для нахождения самого правильного пути через сеть, и недавно были получены очень хорошие результаты. Очень важно подчеркнуть использование такого формально- структурного подхода, который способствует автоматичному определению классов символов через структурирование и параметризацию.

При другом подходе базы данных и связанные с ними процессы обработки используются структурой контроля. Этот подход был изучен системой HEARSAJ 2, которая была разработана в институте Сarnegie-Mellon University, и системой HWIM (hear what I mean). В этих системах комплексная структура данных, которая содержит всю информацию о воспроизведении звуков, изучается с точки зрения конкретных ограничений. Но как выше указано, каждое из этих ограничений имеет особую внутреннюю модель, и полный анализ не может быть произведен. Для проведения анализа в целом структура данных должна иметь взаимодействие между разными процессами, а также средства для интеграции. Несмотря на то, что структура включает в себя несколько весьма различных источников знаний и ее вклад в понимание речи очень общий, она также имеет большое количество степеней свободы, которые могут быть использованы для тщательного системного воспроизведения. В отличие от этого, техника, основанная на цепях Маркова, имеет математическую поддержку. Чтобы иметь возможность сфокусированного исследования ограничений взаимодействия и интеграции в контексте, необходимо применять обе системы. Те системы, которые описывают ограничение взаимодействия, сфокусированы во многом на воспроизведении знаний, и они относительно слабо контролируемы, а системам с математической поддержкой, которые в свою очередь имеют великолепную технику для установления параметров и оптимизации изучения, не достает использования комплексной структуры данных, необходимых для характеристики ограничений высокого уровня, таких как синтаксис. Оба направления в настоящий момент находятся в процессе развития.

В заключение следует сделать акцент на влияние производственной технологии на эти системы. Технология интеграции не является большой проблемой для систем распознавания речи, наоборот, это является архитектурой этих систем, включая способ представления ограничений. Необходимо провести грандиозные эксперименты и найти новые способы, которые необходимы для ограничительного влияния взаимодействия.

Во многих способах распознавание речи имеет типичный пример стремительно развивающегося класса высоко интегрированных комплексных систем, которые должны использовать лучшую компьютерную технику и самые последние достижения современного математического обеспечения.