Смекни!
smekni.com

Использование высоких технологий криминальной средой. Борьба с преступлениями в сфере компьютерной информации (стр. 9 из 46)

Для обеспечения односторонней радиосвязи в пункте, из которого ведется передача сигналов, размещают радиопередающее устройство, содержащее радиопередатчик и передающую антенну, а в пункте, в котором ведется прием сигналов – радиоприемное устройство, содержащее приемную антенну и радиоприемник.

Для двухстороннего обмена сигналами нужно иметь два комплекта оборудования. Двухсторонняя радиосвязь может быть симплексной или дуплексной. При симплексной радиосвязи передача и прием ведутся поочередно. Радиопередатчики в конечных пунктах в этом случае могут работать на одинаковой частоте, на эту же частоту настроены и радиоприемники. Радиопередатчик включается только на время передачи.

При дуплексной радиосвязи передача осуществляется одновременно с приемом. Для связи должны быть выделены две разные частоты для передачи в разных направлениях.

В ВЧ диапазонах такие виды радиосвязи обычно используются для передачи голосовых сообщений и организации региональной сети местной радиотелефонной связи, радиовещания.

В ОВЧ диапазонах радиосвязь используется для организации оперативного управления подразделениями силовых структур.

Система радиопередачи символов и отображения текстовой информации получила название пейджинговой системы (page – страница), соответственно, приемник в этой системе называется пейджер, а приемопередатчик – твейджер (two way page – двунаправленная страница).

Система многоканальной радиосвязи с коммутацией абонентов называется транковой системой (trunk – ствол). Отличием транковых радиостанций является включение в их состав блока адресации вызова, аналогичного вызывной системе проводной телефонии, а также диспетчерского пункта ретрансляции каналов связи.

Различают две основные разновидности организации коммутации абонентов:

- системы с незакрепленным каналом управления;

- системы с закрепленным каналом управления.

Транковые системы с незакрепленным каналом управления

К этому классу относятся системы, в которых на одних и тех же каналах происходит как передача служебной информации (кодов вызова, кодов радиостанций, телефонных номеров и т.д.), так и передача речевой информации. Типичным представителем данного класса транковых систем являются системы SmarTrunk II и LTR.

Основным элементом системы SmarTrunk II является многоканальная базовая станция, оснащенная ретрансляторами и транковыми контроллерами. Однако основное управление в системах SmarTrunk II осуществляют абонентские радиостанции, которые сканируют («просматривают») рабочие каналы, ищут свободный канал для связи или определяют, нет ли на одном из каналов вызывного сигнала для радиоабонента.

Системы LTR относятся к классу систем, использующих метод распределенного управления.

Преимущество распределенного метода управления состоит в том, что доступ к системе может быть выполнен по любому из свободных каналов. Каждый ретранслятор определяет, какой из каналов свободен и передает эту информацию в потоке данных одновременно с речевым сообщением. Это означает, что каждый ретранслятор поддерживает собственный поток данных и обслуживает все обращения к своим каналам. Конфликтные ситуации предотвращаются самими абонентами. Это обеспечивает полностью параллельную обработку всех вызовов.

Транковые системы с закрепленным каналом управления

К этому классу относятся транковые системы, в которых для передачи служебной информации используется отдельный канал связи.

Наиболее известным представителем систем с закрепленным каналом управления являются система MPT 1327. Она обеспечивает быстрое установление связи и целый ряд дополнительных удобств, таких как возможность передачи данных на борт мобильного объекта, построение многосотовых сетей связи, выявление и эффективное устранение нелегальных абонентов и т.д.

В исходном состоянии все абонентские радиостанции в пределах зоны действия данной базовой станции находятся на приеме на частоте управляющего канала. На этом канале система постоянно передает сообщения типа ALOHA – приглашение отвечать ей с уведомлением, сколько времени система ждет ответа абонентских станций.

Вызывающий абонент набирает на клавиатуре своей радиостанции номер нужного ему абонента и производит вызов. При этом его радиостанция посылает вызывную последовательность в ответ на очередную посылку ALOHA от базовой станции. Приняв вызов, база проверяет абонента по принципу «свой-чужой» и на том же управляющем канале вызывает второго абонента. Получив от него подтверждение о готовности к связи, база передает обеим радиостанциям команду на перестройку на один из свободных в этот момент «разговорных» каналов связи (каналов трафика).

Обе радиостанции автоматически перестраиваются на указанный канал и начинают переговоры. При нажатии любым из абонентов клавиши «отбой» происходит автоматический возврат радиостанций в ждущий режим на управляющем канале.

Сотовые системы связи. Сотовая связь (СС) отличается от традиционной радиосвязи тем, что в ней не предусматривается создание отдельных, требующих больших затрат энергии каналов связи между каждой парой абонентов. Вместо этого обслуживаемая территория делится на небольшие ячейки (соты) с соответствующим ретранслятором, таким образом, абоненты сети связываются не непосредственно с центральной, а только с ближайшим ретранслятором.

В настоящее время сотовые системы связи делятся на два вида: аналоговые и цифровые системы сотовой связи. В настоящее время наиболее востребованы системы сотовой телефонной связи цифровых стандартов, таких как GSM и CDMA.

Принцип работы сотовых систем радиосвязи основан на взаимодействии мобильных станций с фиксированной ретрансляционной сетью, объединенной с центром коммутации скоростными линиями связи. Для реализации этого принципа в состав сетей подвижной связи входят:

MSC – центр коммутации подвижной связи;

BTS – базовые станции;

MS – подвижные станции.

Центр коммутации подвижной связи (MSC) обеспечивает управление системой подвижной радиосвязи и является интерфейсом между подвижной станцией и фиксированной телефонной сетью. На рисунке 3 приведена структурная схема типовой сети сотовой связи аналогового стандарта NMT-450.

Каждый MSC обслуживает группу базовых станций. Совокупность BTS, обслуживаемых одним MSC, образует зону обслуживания (ТА).

Рис. 3. Схема работы подвижной системы радиосвязи

На каждой базовой станции один канал используется как канал вызова, он маркируется специальным сигналом опознавания. Один или несколько других каналов, когда они свободны, маркируются другим сигналом, показывающим, что канал свободен. Подвижные станции, находящиеся в зоне действия базовой станции, постоянно работают на прием на канале вызова, по нему каждый включенный сотовый телефон периодически напоминает ретранслятору о своем наличии даже тогда, когда Вы не разговариваете. Ретранслятор передает уровень принятого сигнала MS на MSC, где принимается решение – работать с ним дальше или передать на обслуживание соседней BS. Процесс передачи MS между различными BS получил название роуминг (roaming – бродяга англ.).

В цифровых системах сотовой связи процесс определения местоположения отличается. BS постоянно излучает длинный, неповторяющийся, цифровой сигнал-эталон. MS его постоянно принимает и периодически небольшой его кусочек переизлучает. BS сравнивает полученный сигнал с эталоном, вычисляет временную задержку и по ней определяет «дальность» нахождения MS, которую передает на MSC[31].

Наиболее распространенный в России стандарт сотовой связи – GSM, помимо процедур установления местоположения, адресации вызова, и ретрансляции каналов связи, выполняет процедуры идентификации абонента и индивидуального шифрования трафика сеанса связи. Для реализации этих функций любое абонентское приемопередающее устройство (сотовый телефон) снабжено микропроцессорным комплектом, которым осуществляется выполнение трех алгоритмов (А3, А8, А5):

А3 – алгоритм аутентификации, защищающий SIM-карту абонента от клонирования;

А8 – алгоритм генерации криптоключа;

A5 – собственно алгоритм шифрования оцифрованной речи для обеспечения конфиденциальности переговоров[32].

Ключи алгоритмов A3 и A8 записаны в смарт-картах абонентов, ключ алгоритмов A5 записан в самом ASIC-чипе телефона.

Базовые станции также снабжены ASIC-чипом с A5 и «центром аутентификации», использующим алгоритмы A3¸A8 для идентификации мобильного абонента и генерации сеансового ключа.

Индивидуальный модуль подлинности абонента (SIM) содержит: международный идентификационный номер (IMSI), свой индивидуальный ключ аутентификации (Ki), алгоритм аутентификации (A3).

С помощью записанной в SIM информации в результате взаимного обмена данными между микропроцессором сотового терминала (абонентского аппарата) и оборудованием базовой станции осуществляется полный цикл аутентификации и разрешается доступ абонента к сети.

Процедура проверки сетью подлинности абонента реализуется следующим образом. Сеть передает случайный номер (RAND) на абонентский терминал. На ней с помощью Ki и алгоритма аутентификации A3 определяется значение отклика (SRES), т.е.

SRES = Ki – [RAND].

Абонентский терминал посылает вычисленное значение SRES в сеть, которая сверяет значение принятого SRES со значением SRES, вычисленным сетью. Если оба значения совпадают, подвижная станция приступает к передаче сообщений. В противном случае связь прерывается, и индикатор подвижной станции показывает, что опознавание не состоялось.

Для подтверждения подлинности международного идентификационного номера оборудования сотового телефона (IМЕI) в состав базовой станции входит регистр идентификации оборудования (EIR) – (централизованная база данных). Эта база данных ведется исключительно по оборудованию подвижных станций и состоит из списков номеров IМЕI, организованных следующим образом: