Смекни!
smekni.com

Аналоговые системы передач (стр. 6 из 7)

В сети TMN вводятся опорные (интерфейсные) точки, определяющие границы сервиса. Эти точки делятся на две группы. Первая - включает точки внутри TMN, вторая - вне её. Точки первой группы делятся на три класса:

¾ q - точки между блоками OSF, QAF, MF и NEF, обеспечивают информационный обмен между бло­ками в рамках информационной модели, описанной в стандарте ITU-T M.3100 [62]; эти точки делятся на два типа: qХ - точки между двумя блоками MF или блоком MF и остальными блоками, q3 - точки между двумя блоками OSF или блоком OSF и остальными блоками;

¾ f - точки для подключения блоков WSF к OSF и/или к MF. подробнее описаны в рекомендации ITU-Т Rec. M.3300;

¾ х - точки между OSF, принадлежащих двум TMN.

Точки второй группы делятся на два класса:

¾ g - точки между WSF и пользователем;

¾ m - точки между QAF и управляемым объектом, не принадлежащим TMN.

В соответствии с положением указанных опорных точек определяется положение соответствующих им интерфейсов TMN, обозначаемых заглавными буквами.

9.3 Информационный аспект архитектуры

При создании информационной модели обмена данными (сообщениями) в TMN используется объектно-ориентированный подход (ООП) и концепция Менеджер/Агент. ООП рассматривает управление обменом информацией в TMN в терминах Менеджер – Агент - Объекты. Менеджер, представляя управляющую открытую систему, издает в процессе управления управляемой открытой системой директивы и получает в качестве обратной связи от объекта управления уведомления об их исполнении. Директивы, направленные от Менеджера к Объекту, доводятся до объекта управления Агентом. Уведомления, направленные от Объекта к Менеджеру, доводятся до Менеджера тем же Агентом.

Один Менеджер может быть вовлечен в информационный обмен с несколькими Агентами и, наоборот, один Агент может взаимодействовать с несколькими Менеджерами. Все взаимодействие между Менеджером и Агентом осуществляется на основе использования протокола общей управляющей информации CMIP и сервиса общей управляющей информации CMIS.

9.4 Проектирование сети TMN

На проектируемом участке сети связи необходимо составить сеть управления телекоммуникациями - TMN. Схема управления телекоммуникациями приведена в приложении 5.

В данной схеме менеджер управляющей системы OS реализует функцию управляющего приложения OSF-MAF и управляет устройствами сопряжения и сетевыми элементами через MCF на станции Омск. Эта функция реализована по встроенным каналам управления DCCR. Верхний уровень с нижним связан через интерфейс Q-LAN на крупных и мостовых станциях. Каждому сетевому элементу присвоен свой идентификационный номер NSAP, который имеет фиксированную длину (10 Байт). Адрес сетевого элемента устанавливается в шестнадцатеричной системе счисления. Он имеет идентификатор формата AFI, равный 49, а также системный идентификатор SID (у каждого узла свой). Завершающий элемент адреса – элемент селект, равный 01. Данный номер информирует о том, что адрес NSAP принадлежит сети SDH.

10 Синхронизация сети связи

Проблема синхронизации сетей SDH является частью общей проблемы синхронизации цифровых сетей, использующих ранее плезиохронную иерархию. Общие вопросы синхронизации, описанные в рекомендации CCITT G.810, актуальны как для плезиохронных, так и для синхронных сетей. Отсутствие хорошей синхронизации приводит, например, к относительному "проскальзыванию" цифровых последовательностей или "слипам" (slip) и ведет к увеличению уровня ошибок синхронных сетей.

Цель синхронизации - получить наилучший возможный хронирующий источник или генератор тактовых импульсов или таймер для всех узлов сети. Для этого нужно не только иметь высокоточный хронирующий источник, но и надежную систему передачи сигнала синхронизации на все узлы сети.

Система такого распределения базируется в настоящее время на иерархической схеме, заключающейся в создании ряда точек, где находится первичный эталонный генератор тактовых импульсов PRC (ПЭГ), или первичный таймер, сигналы которого затем распределяются по сети, создавая вторичные источники - вторичный или ведомый эталонный генератор тактовых импульсов SRC (ВЭГ), или вторичный таймер, реализуемый либо в виде таймера транзитного узла TNC, либо таймера локального (местного) узла LNC. Первичный таймер обычно представляет собой хронирующий атомный источник тактовых импульсов (цезиевые или рубидиевые часы) с точностью не хуже 10-11. Он обычно калибруется вручную или автоматически по сигналам мирового скоординированного времени UTC. Эти сигналы затем распространяются по наземным линиям связи для реализации того или иного метода синхронизации.

10.1 Методы синхронизации

Существуют два основных метода узловой синхронизации: иерархический метод принудительной синхронизации с парами ведущий-ведомый таймеры и неиерархический метод взаимной синхронизации. Оба метода могут использоваться отдельно и в комбинации, однако как показывает практика широко используется только первый метод.

Внедрение сетей SDH, использующих наряду с привычной топологией "точка-точка", кольцевую и ячеистую топологии, привнесло дополнительную сложность в решение проблем синхронизации, так как для двух последних топологий маршруты сигналов могут меняться в процессе функционирования сетей.

Сети SDH имеют несколько дублирующих источников синхронизации:

¾ сигнал внешнего сетевого таймера, или первичный эталонный таймер PRC, определяемый в рекомендации ITU-TG.811, сигнал с частотой 2048 кГц (см. ITU-T G.703);

¾ сигнал с трибного интерфейса канала доступа (рассматриваемый здесь как аналог таймера транзитного узла TNC), определяемый в рекомендации ITU-T G.812, сигнал с частотой 2048 кГц, выделяемый из первичного потока 2048 кбит/с;

¾ сигнал внутреннего таймера (рассматриваемый как таймер ведомого локального узла LNC), определяемый в рекомендации ITU-T G.813, сигнал 2048 кГц;

¾ линейный сигнал STM-N, или линейный таймер, сигнал 2048 кГц, выделяемый из линейного сигнала-155,520 Мбит/с или 4nx155,520 Мбит/с.

10.2. Построение сети синхронизации

Установка первичного эталонного генератора ПЭГ осуществляется в управлении дороги в Челябинске. На проектируемый участок данный сигнал поступает на станцию Челябинск и распределяется по участку. ВЗГ установим в крупных узлах сети: в Кургане, Челябинске, Аносово и Уфе.

При организации каналов резервирования синхросигналов необходимо предусматривать, чтобы в системе тактовой синхронизации не возникали замкнутые петли. Схема тактовой сетевой синхронизации представлена в приложении 4.

Основное направление синхросигнала представлено сплошной линией со стрелочкой, резервное – штриховой линией. Основное направление синхросигнала против часовой стрелки по кругу. На станции Курган синхронизация оборудования SMS-600V осуществляется от PRC с Челябинска, от SRC, расположенного на данной станции и от встроенного тактового генератора. Если выйдет из строя оборудование на станции Челябинск, то на станции Курган синхронизация будет осуществляться от сигнала с высшим качеством (от ВЗГ на станции Курган).

11 Расчет надежности проектируемой сети связи

Коэффициент готовности определяется по следующей формуле:

(12.1)

где

- вероятность отказов волоконного кабеля,

- вероятность отказов мультиплексоров.

Вероятность отказов волоконного кабеля рассчитывается по формуле:

, (12.2)

где

- число часов в году, ч/год

- среднее время устранения повреждения ВОК, ч

- приведенная плотность отказов

Приведенная плотность отказов рассчитывается по формуле:

, (12.3)

где

отк/год

Вероятность отказов мультиплексоров рассчитывается по формуле:

, (12.4)

где

- число часов в году, ч/год

- среднее время устранения повреждения оборудования (мультиплексоров), ч

- плотность отказов мультиплексоров

Плотность отказов мультиплексоров рассчитывается так:

, (12.5)

где

- время наработки на отказ, ч.

Надежность определяется для нижнего и верхнего уровней отдельно:

, (12.6)

где n – число участков,

- надежность каждого i-го участка.

Надежность для пространственного кольца определяется по следующей формуле:

(12.7)

В данном проекте организовано кольцо нижнего уровня, протяженностью 737 км и одно верхнего уровня общей протяженностью 1474 км.

Рассчитаем коэффициент готовности для кольца нижнего уровня.Для этого определим приведенную плотность отказов по формуле (12.3):