Смекни!
smekni.com

Обзор применяемых в субъектах РФ возобновляемых источников энергии (стр. 1 из 7)

Министерство регионального развития Российской Федерации

Департамент жилищно-коммунального хозяйства

ОБЗОР

ПРИМЕНЯЕМЫХ В СУБЪЕКТАХ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЗОБНОВЛЯЕМЫХ

ИСТОЧНИКОВ ЭНЕРГИИ

Москва

2007

В рамках реализации политики энергосбережения и повышения энергоэффективности внедрение и использование возобновляемых энергетических ресурсов в отрасли жилищно-коммунального хозяйства является одним из перспективных направлений.

Возобновляемые источники энергии (ВИЭ) восполняются естественным образом, прежде всего за счет поступающего на поверхность Земли потока энергии солнечного излучения, и в обозримой перспективе являются практически неисчерпаемыми. К возобновляемым источникам энергии относится солнечная энергия, а также ее производные: энергия ветра, энергия растительной биомассы, энергия водных потоков. К возобновляемым источникам энергии относят также геотермальное тепло, поступающее на поверхность Земли из ее недр, низкопотенциальное тепло окружающей среды, а также некоторые источники энергии связанные с жизнедеятельностью человека (тепловые "отходы" жилища, промышленных и сельскохозяйственных производств, бытовые отходы и т.п.)

Виды возобновляемых источников энергии и технологии использования

Солнечная энергия

К настоящему времени основными способами использования солнечной энергии являются преобразование ее в электрическую и тепловую.

Солнечные коллекторы (СК) являются техническими устройствами, предназначенными для прямого преобразования солнечного излучения в тепловую энергию в системах теплоснабжения для нагрева воздуха, воды или других жидкостей. Системы теплоснабжения принято разделять на пассивные и активные. Самыми простыми и дешевыми являются пассивные системы теплоснабжения, которые для сбора и распределения солнечной энергии используют специальным образом сконструированные архитектурные или строительные элементы зданий сооружений и не требуют дополнительного специального оборудования.

В настоящее время наибольшее распространение получают активные системы теплоснабжения со специально установленным оборудованием для сбора, хранения и распространения энергии солнца, которые по сравнению с пассивными позволяют значительно повысить эффективность использования солнечной энергии, обеспечить большие возможности регулирования тепловой нагрузки и расширить область применения солнечных систем теплоснабжения в целом.

Плоские солнечные коллекторы являются простейшим и наиболее дешевым способом использования солнечной энергии. Плоский солнечный коллектор представляет собой теплоизолированный с тыльной стороны и боков ящик, внутри которого помещена тепловоспринимающая металлическая или пластиковая панель, окрашенная для лучшего поглощения солнечного излучения в темный цвет и закрытая сверху светопрозрачным ограждением (один или два слоя стекла или прозрачного стойкого под воздействием ультрафиолета пластика). Панель является теплообменником, по каналам которого прокачивается нагреваемая вода. Вода направляется в теплоизолированный бак гидравлически соединенный с солнечным коллектором. За день вода из бака может несколько раз проходить через коллектор, нагреваясь до расчетного уровня температуры, зависящего от соотношения между объемом бака и площадью солнечного коллектора, а также от климатических условий. Циркуляция воды в замкнутом контуре солнечный коллектор - бак - солнечный коллектор может осуществляться принудительно с помощью небольшого циркуляционного насоса или естественным образом за счет разности гидростатических давлений в столбах холодной и нагретой воды. В последнем случае бак должен располагаться выше верхней отметки солнечного коллектора.

Солнечные фотоэлектрические установки осуществляют прямое преобразование энергии солнечного излучения в электроэнергию с помощью фотопреобразователей.

Солнечная фотоэлектрическая установка состоит из солнечных батарей в виде плоских прямоугольных поверхностей, работа которых состоит в преобразовании энергии солнечного излучения в электрическую энергию. Электрический ток в фотоэлектрическом генераторе возникает в результате процессов, происходящих в фотоэлементах при попадании на них солнечного излучения. Наиболее эффективны фотоэлектрические генераторы, основанные на возбуждении электродвижущей силы (ЭДС) на границе между проводником и светочувствительным полупроводником (например, кремний) или между разнородными проводниками.

Наибольшее распространение получили солнечные фотоэлектрические установки на основе кремния трех видов: монокристаллического, поликристаллического и аморфного.

Для фотопреобразователей из монокристаллического кремния в лабораторных условиях на опытных образцах достигнут кпд 24%. На малых опытных модулях - 18%. Для поликристаллического кремния эти рекордные значения равны 17 и 16 %, для аморфного кремния на опытных модулях достигнуты кпд около 11 %.

Все эти данные соответствуют так называемым однослойным фотоэлементам. Кроме того, используются двух- и трехслойные фотоэлементы, которые позволяют использовать большую часть солнечного спектра по длине волны солнечного излучения. Для двухслойного фотоэлемента на опытных образцах получен КПД 30%, а для трехслойного 35-40%.

Ветровая энергия

Ветроэнергетические установки являются основным способом преобразования ветровой энергии в электрическую энергию.

Наиболее распространенным типом ВЭУ является ветровая турбина с горизонтальным валом, на котором установлено рабочее колесо с различным числом лопастей - чаще всего 2-3. Многолопастные колеса применяются в малых установках, предназначенных для работы при невысоких скоростях ветра. Турбина и электрогенератор размещаются в гондоле, установленной на верху мачты. Спектр единичных мощностей выпускаемых ветроустановок в мире весьма широк: от нескольких сот Вт до 2-4 МВт.

Малые ВЭУ (мощностью до 100 кВт) находят широкое применение для автономного питания потребителей, и сферы их использования во многом совпадают с фотопреобразователями. Особенно эффективно использование малых установок для водоснабжения (подъем воды из колодцев и скважин, ирригация). Автономные малые ветроустановки могут комплектоваться аккумуляторами электрической энергии и/или работать совместно с дизельгенераторами. В ряде случаев используются комбинированные ветро-солнечные установки, позволяющие обеспечивать более равномерную выработку электроэнергии, учитывая то обстоятельство, что при солнечной погоде ветер слабеет, а при пасмурной - наоборот, усиливается.

Крупные ветроустановки (мощностью более 100 кВт), как правило, - сетевые, т.е. предназначены для работы на электрическую сеть.

Удельная стоимость крупных ВЭУ сегодня лежит в интервале 800-1000$/кВт, а малых ВЭУ, как правило, выше и увеличивается с уменьшением мощности, достигая величины 3000 $/кВт (иногда и выше) для установок мощностью от нескольких сот Вт до 1 кВт.

Геотермальная энергия

Геотермальное теплоснабжение является достаточно хорошо освоенной технологией. Преобразование внутреннего тепла Земли в электрическую энергию осуществляют геотермальные электростанции (ГеоЭС).

Источники глубинного тепла - радиоактивные превращения, химические реакции и др. процессы, происходящие в земной коре. Температура пород с глубиной растет и на уровне 2000-3000 м от поверхности Земли превышает 100°С. Циркулирующие на больших глубинах воды нагреваются до значительных температур и могут быть выведены на поверхность по буровым скважинам. В вулканических районах глубинные воды, нагреваясь, поднимаются по трещинам в земной коре. В этих районах термальные воды имеют наиболее высокую температуру и расположены близко к поверхности, иногда они выделяются в виде перегретого пара

Современные экологически чистые ГеоЭС исключают прямой контакт гео­термального рабочего тела с окружающей средой и выбросы вредных парниковых газов (прежде всего СО2) в атмосферу. С учетом лимитов на выбросы углекислого газа ГеоЭС и ГеоТС имеют заметное экологическое преимущество по сравнению с тепловыми электростанциями, работающими на органическом топливе.

Приливная энергия

Энергия морских приливов преобразовывается в электрическую энергию с использованием приливных электростанций, использующих перепад уровней "полной" и "малой" воды во время прилива и отлива. При совместной работе в одной энергосистеме с мощными тепловыми (в т. ч. и атомными) электростанциями энергия, вырабатываемая ПЭС, может быть использована для участия в покрытии пиков нагрузки энергосистемы, а входящие в эту же систему ГЭС, имеющие водохранилища сезонного регулирования, могут компенсировать внутримесячные колебания энергии приливов. Основное преимущество электростанций, использующих морские приливы, состоит в том, что выработка электроэнергии носит предсказуемый плановый характер и практически не зависит от изменений погоды.

Энергия биомассы

Первичная биомасса является продуктом преобразования энергии солнечного излучения при фотосинтезе.

В зависимости от свойств "органического сырья" возможны различные технологии его энергетического использования.

Для использования сухой биомассы наиболее эффективны термохимические технологии (прямое сжигание, газификация, пиролиз и т.п.). Для влажной биомассы - биохимические технологии переработки с получением биогаза (анаэробное разложение органического сырья) или жидких биотоплив (процессы сбраживания).

Газификация древесных отходов обеспечивает получение топливного газа, основу которого составляет СО, Н2 и N2 и который может быть использован в качестве газообразного топлива в котельных, газовых турбинах и двигателях внутреннего сгорания.