Смекни!
smekni.com

Інтерполяція функції в прямокутнику (стр. 2 из 7)

Розглянемо многочлен степеня :

де

, .

Так як

то многочлен приймає значення у вузлах інтерполяції.

Тому має місце формула

Це і є інтерполяційна формула Лагранжа для функцій двох змінних. Вона є точною для многочленів, степінь яких по не перевищує , а по y - не перевищує .

§5. Двовимірні інтерполяційні

ланцюгові дроби.

Розглянемо ще один спосіб двовимірного інтерполювання функцій – двовимірні інтерполяційні ланцюгові дроби. Нехай маємо дві послідовності дійсних чисел і . Ланцюговим дробом називається вираз вигляду

,

а n-м підхідним дробом ланцюгового дробу називається вираз вигляду

Нехай маємо функцію задану своїми значеннями у вузлах сітки (див. § 1). Позначимо

значення функції в інтерполяційних вузлах. За цими значеннями побудуємо двовимірний ланцюговий дріб такого вигляду:

, (3)

де ,

Твердження 1.Двовимірний інтерполяційний ланцюговий дріб (3) має коефіцієнтів, тобто кількість коефіцієнтів рівна кількості інтерполяційних вузлів .

Доведення. Випадок, коли доведено в [2]. Припустимо тепер, що . Введемо позначення . Всі коефіцієнти дробу (3) містяться в конструкціях , причому кожна така конструкція містить 1+(n-p)+(m-p) коефіцієнтів. Тоді весь двовимірний ланцюговий дріб містить таку кількість коефіцієнтів:

. Твердження доведено.

Згідно з [2], значення двовимірного інтерполяційного ланцюгового дробу (3) можна знайти за допомогою оберненого рекурентного алгoритму, який у цьому випадку формулюється так: спочатку вибираємо початкове значення , а всі наступні значення знаходяться за рекурентним співвідношенням

,

де

при ,

при .

Тоді значення дробу (3) буде дорівнювати

.

Скориставшись оберненим рекурентним алгоритмом, отримаємо дріб (3) у вигляді відношення двох многочленів від двох незалежних змінних х та у :

.

Згідно з [3] має місце наступне твердження.

Твердження 2.Двовимірний інтерполяційний ланцюговий дріб (3) є дробово-раціональною функцією двох незалежних змінних. Степені многочленів чисельника та знаменника по змінним х та у задовольняють нерівності:

, ,

, ,

де .

Доведення. Доведемо за аналогією з [1], де подібне твердження було доведено для випадку . Перепишемо підхідний дріб у такому вигляді:

,

де, як і раніше, . В [4] доведено, що є многочлен степені , а степені . Виходячи з цього маємо, що r(k) та задовольняють наступні рекурентні співвідношення:

,

(4)

Припустимо, що . Вкладаючи співвідношення (4) одне в друге, отримуємо, що

,

так як . Оскільки , та при всіх s=1,2,…,k , то маємо

,,

отже .

Розглянемо випадок, коли . Тоді, користуючись формулою попереднього випадку, з (4) маємо:

отже . Тепер можемо об’єднати ці два випадки в одній формулі:

.

Ми довели твердження для степенів відносно х. Для степенів відносно у твердження доводиться повністю аналогічно.

Визначимо коефіцієнти дробу (3) виходячи з умови інтерполяційності двовимірного ланцюгового дробу, тобто

Для цього розглянемо квадратні матриці

де

та

де

Визначимо частинну обернену поділену різницю k-го порядку для функції двох змінних формулою

де

Твердження 3.Коефіцієнти двовимірного інтерполяційного ланцюгового дробу (3) задовольняють співвідношення

(5)

Доведення. Легко бачити, що формула (5) має місце для коефіцієнтів конструкції при довільному значенні і . Але коли один з індексів або рівен нулю (тобто розбиття по відповідній змінній має лише одну точку) а інший має довільне значення (назвемо такі розбиття лінійними), то і формула (5) має місце для всіх коефіцієнтів двовимірного інтерполяційного ланцюгового дробу. За допомогою методу математичної індукції доведемо, що формула (5) має місце для довільного розбиття, а не тільки для лінійного. Для цього спочатку покажемо, що навіть коли , ми маємо право на кожному кроці методу математичної індукції одночасно збільшувати розбиття по обох змінних на 1. Це так, оскільки довільне розбиття прямокутника, яке містить точок, може бути отримано з деякого лінійного розбиття додаванням однакової кількості точок n до розбиття по кожній координаті. А оскільки у випадку лінійного розбиття справедливість формули доведено, то ми маємо можливість одночасно збільшувати розбиття по обох змінних на кожному кроці на 1.

Зробимо припущення, що (5) виконується і для інших значень , при і покажемо, що тоді (5) має місце і при . Для цього розглянемо інтерполяційний дріб виду:

(6)

Зробимо позначення

. (7)

Тоді (6) набуває вигляду

.

А оскільки , то

Та як , то в кінцевому результаті маємо:

. (8)

З іншого боку (7) є двовимірним інтерполяційним ланцюговим дробом. Він має n поверхів і його коефіцієнти, за припущенням, визначаються згідно з формулами .

Тут

при .

З останньої формули та з формули (8) випливає, що , а тоді і . Отже формула (5) має місце і при .

Твердження доведено.


§6. Результати і висновки.

В цій роботі були розглянуті деякі цікаві властивості двовимірних інтерполяційних агрегатів. Зокрема були доведені твердження 1 – 3 (див. § 5), що дають відповіді на питання про кількість коефіцієнтів двовимірного інтерполяційного ланцюгового дробу, про степінь многочленів чисельника та знаменника цього дробу по змінним х та у а також вказують зручний спосіб обчислення його (дробу) коефіцієнтів.

Для проведення обчислювальних експериментів були складені дві програми, які реалізують алгоритми двовимірної інтерполяції многочленами і дробами. Саме дві, оскільки при одних і тих же початкових умовах (функція, область і набір вузлів) побудова двовимірних інтерполяційних ланцюгових дробів є значно менш ресурсоємним алгоритмом, і тому для дробів відкривається можливість перевірити точність при таких наборах інтерполяційних вузлів із заданої області, які містять в декілька разів (а то і в десятки разів) більше точок, ніж для многочленів. Але для порівняння результатів ці програми були об’єднані в одну, текст якої подано в додатку.

В ході обчислювальних експериментів було відмічено цікаві результати стосовно точності двовимірних інтерполяційних агрегатів, а саме : якщо при одновимірній інтерполяції із зростанням кількості точок розбиття проміжку похибка наближаючого агрегату прямує до нуля, то у випадку двох змінних можна спостерігати своєрідне “коливання” точності то в кращу, то в гіршу сторону. Найбільш яскраво це проявлялося при інтерполяції дробами і многочленами з вибором рівномірно розташованих на проміжках вузлах, але коли за вузли бралися корені многочлена Чебишева, то у многочленів збіжність значно покращувалася. Хоч такий вибір вузлів і не мав такого ж позитивного впливу на збіжність двовимірних інтерполяційних ланцюгових дробів.

Нижче подано добірку результатів найбільш характерних обчислювальних експериментів. Вузли рівномірно розподілені по проміжках.

Дроби Многочлени
Nx Ny Абсолютна похибка Відносна похибка Абсолютна похибка Відносна похибка
1 1 0.03359589352 0.17112619041 0.03359589352 0.17112619041
1 3 0.07979407980 0.55855855856 0.02794673681 0.12772351615
1 5 0.10256410257 0.71794871796 0.02794673681 0.12772351615
1 7 0.11327134404 0.79289940829 0.02794673681 0.12772351615
1 9 0.11948690916 0.83640836410 0.02794673681 0.12772351615
2 1 0.05513784461 0.38596491228 0.02794673681 0.12772351615
2 3 0.00149588631 0.01047120418 0.00286056709 0.01053077454
2 5 0.00367084735 0.02569593147 0.00286056709 0.01053077454
2 7 0.00496606522 0.03476245655 0.00286056709 0.01053077454
2 9 0.00580130529 0.04060913705 0.00286056709 0.01053077454
3 1 0.07979407980 0.55855855856 0.02794673681 0.12772351615
3 3 0.00010955319 0.00038036785 0.00039529924 0.00141131629
3 5 0.00057516716 0.00402617010 0.00029506299 0.00099681979
3 7 0.00121245188 0.00848716313 0.00029506299 0.00099681979
3 9 0.00174083342 0.01218583397 0.00029506299 0.00099681979
4 1 0.09367681499 0.65573770492 0.02794673681 0.12772351615
4 3 0.00024931439 0.00174520070 0.00029506299 0.00099681979
4 5 0.00000531018 0.00005369183 0.00002514144 0.00008248886
4 7 0.00002154654 0.00022136156 0.00002514144 0.00008248886
4 9 0.00003794714 0.00038368775 0.00002514144 0.00008248886
5 1 0.10256410257 0.71794871796 0.02794673681 0.12772351615
5 3 0.00057516716 0.00402617010 0.00029506299 0.00099681979
5 5 0.00000018143 0.00000086782 0.00000135931 0.00000910828
5 7 0.00000125315 0.00001130940 0.00000135931 0.00000910828
5 9 0.00000350675 0.00003164774 0.00000135931 0.00000910828
7 1 0.11327134404 0.79289940829 0.02794673681 0.12772351615
7 3 0.00121245188 0.00848716313 0.00029506299 0.00099681979
7 5 0.00000125315 0.00001130940 0.00000135931 0.00000910828
7 7 0.00000004615 0.00000032868 0.00000017397 0.00000055402
7 9 0.00000358960 0.00004242584 0.00000009208 0.00000028471
9 1 0.11948690916 0.83640836410 0.02794673681 0.12772351615
9 3 0.00174083342 0.01218583397 0.00029506299 0.00099681979
9 5 0.00000350675 0.00003164774 0.00000135931 0.00000910828
9 7 0.00000358960 0.00004242584 0.00000009208 0.00000028471
9 9 0.00000013991 0.00000085349 0.00000000610 0.00000001943
10 1 0.12170910661 0.85196374625 0.02794673681 0.12772351615
10 3 0.00196367204 0.01374570429 0.00029506299 0.00099681979
10 5 0.00024223355 0.00161644741 0.00000135931 0.00000910828
10 7 0.00000023596 0.00000152890 0.00000009208 0.00000028471
10 9 0.00000014410 0.00000103302 0.00000000358 0.00000001108
13 9 0.00000008845 0.00000106143 0.00000000032 0.00000000108
13 13 0.00000072990 0.00000584425 0.00000000000 0.00000000005
13 17 0.00000080456 0.00000965474 0.00000000001 0.00000000016
16 11 0.00001599424 0.00015846739 0.00000000001 0.00000000006
16 16 0.00000001111 0.00000009383 0.00000000002 0.00000000028
16 21 0.00001498932 0.00017987182 0.00000000023 0.00000000161
19 13 0.00000056491 0.00000677887 0.00000000007 0.00000000022
19 19 0.00000528137 0.00006163225 0.00000000063 0.00000000209
19 25 0.00010534941 0.00104050837 0.00000000649 0.00000004557
22 15 0.00080950002 0.00903666350 0.00000000040 0.00000000284
22 22 0.00001861083 0.00021805476 0.00000002366 0.00000027061
22 29 0.00043326054 0.00434224569 0.00000107388 0.00000753194
25 17 0.00007599610 0.00091195321 0.00000000647 0.00000002149
25 25 0.00002255252 0.00017865824 0.00000040086 0.00000130487
25 33 0.00113924460 0.00829969851 0.00003818874 0.00026419263