Смекни!
smekni.com

Понятие качество образования . Эволюция понятия в российской и зарубежной образовательной сист (стр. 3 из 5)

2.2 Коэффициент корреляции Пирсона

Коэффициент корреляции Пирсона применяется для метрических величин. Можно сказать, что корреляция определяет степень, с которой значения двух переменных пропорциональны друг другу. Важно, что значение коэффициента корреляции не зависит от масштаба измерения. Например, корреляция между ростом и весом будет одной и той же, независимо от того, проводились измерения в дюймах и футах или в сантиметрах и килограммах. Пропорциональность означает просто линейную зависимость. Корреляция высокая, если на графике зависимость можно представить прямой линией (с положительным или отрицательным углом наклона). Проведенная прямая называется прямой. Коэффициент корреляции Пирсона вычисляется следующим образом. Пусть исходными данными является набор случайных векторов (xi, yi), где i=1,2,…,n. Тогда их коэффициент корреляции задаётся формулой:

Если случайные вектора (xi, yi) независимы и одинаково распределены, то выборочный коэффициент корреляции сходится к теоретическому при безграничном возрастании объема выборки:

,

где M– математическое ожидание. Математическое ожидание — мера среднего значенияслучайной величины в теории вероятностей.

Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие.

Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.

Значительная корреляция между двумя случайными величинами всегда является свидетельством существования некоторой статистической связи в данной выборке, но эта связь не обязательно должна наблюдаться для другой выборки и иметь причинно-следственный характер.

В то же время, отсутствие корреляции между двумя величинами ещё не значит, что между ними нет никакой связи. Более тонкий инструмент для изучения связи между двумя случайными величинами является понятие взаимной информации.[6]

Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи.


3 Инструменты качества

3.1 Семь инструментов контроля качества

Для анализа результатов контроля качества широкое распространение получили методы статистического контроля качества, которые представляют записи статистических данных о процессах изготовления продукции или предоставления услуг. Наиболее известные из них «семь инструментов контроля качества», которые сначала широко применялись в кружках качества в Японии, а затем, благодаря своей эффективности и доступности для рядовых работников, распространились и по другим странам.

Инструменты качества:

· Диаграмма Парето;

· Причинно-следственный анализ;

· Группировка данных по общим признакам;

· Контрольный лист;

· Гистограмма;

· Диаграмма разброса;

· График и контрольная карта.

По мнению Каору Исикавы применение перечисленных методов позволяет решить 95% любых проблем, возникающих на производстве.[7]

Исходя из поставленной задачи, разрабатывается система применения методов качества. Разработанная система не обязательно должна содержать все 7 методов. Порядок применения инструментов контроля качества в системе также может быть различный, в зависимости от установленной цели. Далее будут рассмотрены два инструмента качества: гистограмма и диаграмма разброса.

3.2 Метод «Гистограмма»

Гистограмма - один из инструментов статистического контроля качества. Метод гистограмм применяется везде, где требуется проведение анализа точности и стабильности процесса, наблюдение за качеством продукции, отслеживание существенных показателей производства. Целью метода является контроль действующего процесса и выявление проблем, подлежащих первоочередному решению. Данный метод - один из наиболее распространенных методов, помогающих интерпретировать данные по исследуемой проблеме. Благодаря графическому представлению имеющейся количественной информации, можно увидеть закономерности, трудно различимые в простой таблице с набором цифр, оценить проблемы и найти пути их решения.

План действий:

1. Собрать данные для измеряемых (контролируемых) параметров действующего процесса.

2. Построить гистограмму.

3. Проанализировать гистограмму:

· определить тип распределения данных (нормальное, несимметричное, бимодальное и т. д.);

· выяснить вариабельность процесса;

· при необходимости осуществить анализ нормального распределения с использованием математического аппарата.

4. Ответить на вопрос: "Почему распределение именно такое, и о чем это говорит?"

Для осмысления качественных характеристик изделий, процессов, производства (статистических данных) и наглядного представления тенденции изменения наблюдаемых значений применяют графическое изображение статистического материала, т. е. строя гистограмму распределения.

Гистограмма - один из вариантов столбиковой диаграммы, позволяющий зрительно оценить распределение статистических данных, сгруппированных по частоте попадания в определенный (заранее заданный) интервал. Собранные данные служат источником информации в процессе анализа с использованием различных статистических методов и выработке мер по улучшению качества процессов.

Порядок построения гистограммы:

1. Собрать данные, выявить максимальное и минимальное значения и определить диапазон (размах) гистограммы.

2. Полученный диапазон разделить на интервалы, предварительно определив их число (обычно 5-20 в зависимости от числа показателей) и определить ширину интервала.

3. Все данные распределить по интервалам в порядке возрастания: левая граница первого интервала должна быть меньше наименьшего из имеющихся значений.

4. Подсчитать частоту каждого интервала.

5. Вычислить относительную частоту попадания данных в каждый из интервалов.

6. По полученным данным построить гистограмму - столбчатую диаграмму, высота столбиков которой соответствует частоте или относительной частоте попадания данных в каждый из интервалов:

· наносится горизонтальная ось, выбирается масштаб и откладываются соответствующие интервалы;

· затем строится вертикальная ось, на которой также выбирается масштаб в соответствии с максимальным значением частот.[8]

Затем производится анализ формы гистограммы:

1) Обычная (симметричная, колоколообразная) форма(рисунок 3). Среднее значение гистограммы соответствует середине размаха данных. Максимальная частота также приходится на середину и постепенно уменьшается к обоим концам. Форма симметричная.

Рисунок 3 – Обычное распределение

Такая форма гистограммы встречается наиболее часто. Она свидетельствует о стабильности процесса.

2) Отрицательно скошенное распределение (положительно скошенное распределение) (рисунок 4). Среднее значение гистограммы располагается правее (левее) середины размаха данных. Частоты резко уменьшаются при движении от центра гистограммы вправо (влево) и медленно влево (вправо). Форма ассиметричная.

Рисунок 4 - Отрицательно скошенное распределение

Такая форма образуется либо, если верхняя (нижняя) граница регулируется теоретически или по значению допуска либо, если правое (левое) значение невозможно достигнуть.

3) Распределение с обрывом справа (распределение с обрывом слева) (рисунок 5). Среднее значение гистограммы располагается далеко правее (левее) середины размаха данных. Частоты очень резко уменьшаются при движении от центра гистограммы вправо (влево) и медленно влево (вправо). Форма ассиметричная.

Рисунок 5 – Распределение с обрывом справа

Такая форма часто встречается в ситуации стопроцентного контроля изделий по причине плохой воспроизводимости процесса.

4) Гребенка (мультимодальный тип) (рисунок 6). Интервалы через один или два обладают более низкими (высокими) частотами.

Рисунок 6 – Мультимодальное распределение

Такая форма образуется либо, если количество единичных наблюдений, входящих в интервал, колеблется от интервала к интервалу либо, если применяется определенное правило округления данных.