Интеллектуальность как человеческое качество предполагает способность общаться, понимать, мыслить, применять опыт для формирования решений. В интеллектуальных системах эти функции реализуются соответственно посредством интерфейса системы с пользователем на языке, близком к естественному; интерпретации получаемых данных путем сопоставления с известной информацией о предметной области; логическом выводе решений; применении особого рода конструктивной информации - знаний о способах и стратегиях решения задач в предметной области. Кроме того, интеллектуальные системы, как и человек, имеют способность обучаться; обобщать получаемую информацию и накапливать опыт, а также объяснять получаемые решения, хотя в разных технологиях эти возможности реализованы по-разному и на разном уровне.
Для решения задач информатизации практической деятельности необходимо иметь в виду специальный, более точный смысл понятия интеллектуальной системы.
В специальном смысле под интеллектуальной понимается программная система, построенная по особой технологии. Технология определяет как структуры данных для представления информации в машине, так и методы ее обработки. Регламентируются также основные функции системы, структура, стратегии функционирования, а отсюда и круг задач, к которым такие системы могут применяться.
Таким образом, для специалиста применение термина «интеллектуальная система» означает определенную технологическую базу, на которой он должен основываться как разработчик. Вообще говоря, существует не одна, а множество технологий разработки интеллектуальных систем. Исторически первая из них - технология нейронных сетей, толчком для ее возникновения послужила идея в качестве отправной точки взять модель физиологической основы человеческого интеллекта - высшей нервной системы. Другая наиболее широко и настоящее время распространенная технология экспертных систем, или иначе ее называют инженерия знаний, базируется на применении особого рода конструктивной информации - знаний. Знания - это информация о способах решения разнообразных человеческих задач, профессиональных и непрофессиональных. Знания позволяют интеллектуальной системе формировать рекомендации пользователю для принятия решений относительно конкретных возникающих перед ним задач, например - врачу помочь поставить диагноз, инженеру - определить неисправность технической системы, геологу - обнаружить месторождение полезных ископаемых и т.п.
Под интеллектуальными понимают также гибридные системы, использующие элементы технологий искусственного интеллекта наряду с другими компьютерными технологиями.
Под поддержкой принятия решений в широком смысле понимают всевозможную помощь пользователю в процессе его работы. В узкоспециальном смысле этот термин предполагает подход к решению задачи пользователя как к управленческой и в конечном итоге означает выбор вариантов решения задач пользователя.
Автоматизированная поддержка принятия решений в широком смысле означает выполнение хотя бы одной из следующих функций:
1) Предоставление справочной информации без автоматического формирования запросов к базам данных;
2) Предоставление справочной информации с автоматическим формированием запросов к базам данных и привязкой к условиям решаемой задачи;
3) Графическая визуализация получаемой справочной информации и информации о способах принятия решений;
4) Предоставление рекомендаций по формированию решений;
5) Сужение пространства поиска решения пользователем.
6) Выбор и рекомендации наиболее приемлемых решений с учетом рангов;
7) Моделирование последствий принятия решений.
Следует отметить, что в настоящее время большинство программных систем, называемых системами поддержки принятия решений, носят всего лишь информационно-справочный характер, то есть выполняют лишь первую из перечисленных функций. Другие информационно-справочные системы позволяют выполнить несколько первых функций [2].
В этой связи можно сказать о широко известных и популярных технологиях баз данных и геоинформационных систем (ГИС). Что может получить пользователь от такой системы. Ну, конечно, разнообразную справочную информацию. Правда, добраться до нее бывает не так-то просто, даже если система снабжена развитым диалогом типа меню. Очень часто для этого пользователю требуется помощь программиста или оператора системы. Популярность ГИС вызвана тем, что они помогают лицам, принимающим решения (ЛПР), еще и тем, что представляют информацию визуально, то есть выполняют функцию, указанную четвертой. Примером могут служить разнообразные задачи по районированию территорий. Известно, что возможность визуального представления повышает конструктивность получаемой информации и ее полезность для принятия решений. Именно это, а также то, что ГИС имеют дело с географической информацией, которая оказывается чрезвычайно полезной в большинстве задач организационного управления, сделали эту технологию очень популярной.
Практически все реально действующие ГИС разного назначения имеют информационно-справочный характер. Схема взаимодействия пользователя и системы в них реализуется по цепочке: обход дерева меню - запрос к атрибутивным базам данных - визуализация на карте.
Однако, необходимо отметить, что геоинформационные технологии стремительно развиваются. Например, существуют ГИС, позволяющие моделировать текущую ситуацию и последствия принимаемого решения. Развитие ГИС-технологий идет также в сторону интеллектуализации. В качестве примера можно привести развитие объектно-ориентированных мультидетальных ГИС.
Разработка интеллектуальных систем поддержки принятия решений подразумевает конструктивный динамический подход: во-первых, необходимо подавляющее число параметров, участвующих в формировании запроса к атрибутивным базам, формировать автоматически, минимально загружая пользователя, тем самым выполняется функция 2 - конструктивный подбор информации. Далее, с помощью интеллектуальной системы возможно не только визуализировать на карте полученную в результате запроса информацию, но и выполнять и иллюстрировать ее оценки. И наконец, результатом работы системы должны быть также рекомендации пользователю для принятия решений, которые он может получить в текстовом виде.
Таким образом, интеллектуальная система может конструктивно выполнять функции поддержки принятия решений на более конструктивных уровнях. Главное отличие интеллектуальных систем поддержки принятия решений от информационно-справочных систем состоит в том, что обязательным элементом функционирования является формирование рекомендаций, или проектов решений. Причем большинство систем позволяют получить несколько вариантов решений с указанием их относительного предпочтения и условий реализации [2].
Вывод: очень важной особенностью интеллектуальной системы является то, что сама логика взаимодействия ее с пользователем обычно диктуется процессом решения функциональной задачи, и поэтому работа с такой системой выглядит для него, как ни парадоксально, гораздо проще и естественнее, чем в справочной системе
Особенный интерес представляет интеллектуальная поддержка принятия решений в организационном управлении. Эта область применения интеллектуальных систем развивается сравнительно недавно. Объяснение простое: в сравнении с другими профессиональными областями, организационное управление - довольно сложная предметная область для экспертной системы. Во-первых, она не является статической, или хотя бы квазистатической, как, например, медицина, химия и др. Некоторые задачи, возникающие у управленца, решаются всего один раз, а затем теряют актуальность. Во-вторых, известно, что управленческие задачи являются слабо структурированными. В-третьих, допуская детерминированную декомпозицию, трудно поддаются представлению в форме задачи поиска в пространстве состояний, что затрудняет применение моделей представления знаний с развитым аппаратом логического вывода. Этот перечень можно продолжать. Кроме того, пожалуй, трудно назвать такую управленческую область, где можно было бы найти идеального специалиста-эксперта, который в принципе не допускал бы ошибок ни при каких обстоятельствах и мог бы описать критерии поиска эффективного решения управленческих задач. К тому же, часто встает вопрос, что следует повышать: эффективность самого решения или эффективность процесса принятия решения.
Известно, что для организационного управления наиболее применим так называемый операциональный подход, аккумулирующий для решения задач практического управления разнообразные методы: системный подход, ситуационное управление, теорию принятия решений, методы математического моделирования- теорию управления, а также эмпирический и эвристический подход. Это не значит, что организационное управление сводится к одной из этих областей, а как раз то, что перечисленные методы и подходы применяются постольку, поскольку представляются полезными для решения практических задач. Как раз эта особенность и привлекает специалистов по интеллектуальным системам к созданию систем поддержки решений в области организационного управления, поскольку практически вся методология искусственного интеллекта представляет как бы «втискивание» известных методологий в рамки прагматического подхода для решения человеческих задач. Кроме того, интеллектуальные системы могут разрешить также проблему представления и использования нечеткой информации, которая наиболее характерна для организационного управления.