Смекни!
smekni.com

Компьютерные технологии поддержки управленческих решений (стр. 3 из 7)

По сути дела, направление на создание автоматизированных систем управления, предметом которого была автоматизация организационного управления, не было отмечено большими успехами именно в силу того, что во время его расцвета - в 70-е годы - не был развит операциональный подход, а методология искусственного интеллекта только зарождалась. Сложность предметной области на том этапе не была преодолена, а понятие Автоматической Системы Управления свелось, в результате, к понятию автоматизированной информационно-справочной системы. Правда, положительным результатом можно считать то, что были всесторонне обследованы многие сферы организационного управления. Новый виток в этой области связывается с созданием географических информационных систем. Но, как видно из вышесказанного, применение ГИС само по себе не является панацеей. Ясно, что активизация этого направления должна повысить уровень информатизации общества и, в частности, управления, так как связана с инвентаризацией информации (создание разного рода кадастров и т.п.). Но ГИС смогут достаточно полно решать задачи поддержки принятия решений только при интеграции с методологией создания интеллектуальных систем и другими технологиями.

Методология создания экспертных систем в области управления должна удовлетворять следующим требованиям:

- поддерживать постановку слабо структурированных задач;

- поддерживать принципы разработки и функционирования открытых систем, каковыми являются управленческие системы;

- поддерживать функции ЛПР как аккумулирующего, коммутирующею и координирующего информационного центра;

- поддерживать функции ЛПР по подготовке, принятию и исполнению решений;

- использовать методы инженерии для представления и использования нечеткой информации;

- использовать точные методы из теории управления и статистики, а также разнообразные другие методы моделирования поведения объекта управления и формирования решений;

- интегрироваться с другими технологиями, такими как ГИС, базы данных и др.

Учитывая все перечисленные особенности, попробуем ответить на вопрос: «В каких областях организационного управления и какие управленческие задачи целесообразно решать с применением интеллектуальных систем?».

Очевидно, наиболее успешно и достаточно быстро можно создавать интеллектуальные системы, если предметная область не слишком широка. В противном случае можно пойти на создание нескольких систем, декомпозируя задачу. Либо ограничиться определенным уровнем концептуальной постановки задачи, то есть, попросту говоря, ограничить детализацию. В качестве примера можно привести проблему создания территориальных систем экологического мониторинга. Ясно, что это одна из тех проблем, которые декомпозируются по территориально-отраслевому принципу. Правда, остается вопрос, с какого уровня и какой конкретной подзадачи начинать. К сожалению, в наших условиях этот вопрос чаще всего решается с точки зрения наличия финансового обеспечения.

Другой случай очевидных преимуществ создания интеллектуальных систем наблюдается, если предметная область достаточно проста, но требуется максимально повысить эффективность самого процесса формирования решений. Примером могут служить экспертные системы для поддержки принятия решений в кризисных ситуациях. Па первое место в таких задачах ставятся функции ЛПР как координирующего информационного центра. Реализация этой функции относительно несложна, но предполагает также попутное решение проблемы поддержки средств автоматизации связи.

Большие преимущества применение технологий интеллектуальных систем дает там, где область управления располагает большими объемами накопленной информации - базами данных. Это дает возможность их обобщения и, например, создания нейроэкспертной системы для решения задач планирования, прогнозирования и т.п.

В качестве примеров конкретных интеллектуальных систем в области организационного управления можно привести следующие. ЭС IМАСS помогает руководителям промышленного производства в управлении делопроизводством, планировании объема продукции, переучете товаров и др. (США). ЭС SmartSlim - поддержка принятия управленческих решений в области маркетинга (США) [3].

Вывод: интеллектуальная система формирует обычно один или несколько вариантов решения в порядке предпочтения. Предлагаемые такой системой рекомендации пользователь - лицо, принимающее решение, может либо принять, либо отвергнуть, однако, за последствия несет ответственность он сам. При этом преимущество интеллектуальной системы заключается в конструктивном функциональном подходе к решению задач. Интеллектуальная система помогает выполнить ЛПР его должностные функции.

1.3. Алгоритмы для выбора управленческих решений

Одним из видов алгоритмов для выбора управленческих решений является метод анализа иерархий.

Метод анализа иерархий представляет собой систематическую процедуру для иерархического представления элементов. Данная процедура определяет суть проблемы. Проблема декомпозируется на более простые составляющие части и обрабатывается последовательной обработкой непосредственно ЛПР по парным сравнениям. В итоге выражается относительная интенсивность взаимодействия элементов в иерархии. Все параметры выражаются численно, а сам метод включает в себя процедуры синтеза множественных суждений, получения приоритетности критериев и нахождения альтернативных решений. Данный метод основан на способности людей логически размышлять, определять события и устанавливать отношения между ними.

Метод анализа иерархий – методологическая основа для решения задач выбора альтернатив посредством их многокритериального рейтингования. Метод анализа иерархий создан американским ученым Т. Саати и вырос в настоящее время в обширный междисциплинарный раздел науки, имеющий строгие математические и психологические обоснования и многочисленные приложения.

Основное применение метода – поддержка принятия решений посредством иерархической композиции задачи и рейтингования альтернативных решений.

Метод позволяет:

В рамках метода анализа иерархий нет общих правил для формирования структуры модели принятия решения. Это является отражением реальной ситуации принятия решения, поскольку всегда для одной и той же проблемы имеется целый спектр мнений. Метод позволяет учесть это обстоятельство с помощью построения дополнительной модели для согласования различных мнений, посредством определения их приоритетов. Таким образом, метод позволяет учитывать «человеческий фактор» при подготовке принятия решения. Это одно из важных достоинств данного метода перед другими методами принятия решений.

Также для выбора правильных решений применяются методы теории игр. Одним из таких методов является метод конечной дискретизации элементов, который и был введен в состав системы поддержки принятия решений.

Данный метод используется для нахождения решений в конфликтных ситуациях. Типичный конфликт характеризуется тремя основными составляющими:

Любая конфликтная ситуация, взятая из реальной жизни, как правило, довольно сложна. Ее изучение, к тому же, затруднено наличием многих и очень разных обстоятельств, часть из которых ни на развитие конфликта, ни на его исход сколь либо существенного влияния не оказывает. Поэтому для того, чтобы анализ конфликтной ситуации оказался возможным, необходимо от этих второстепенных факторов отвлечься, что при удачном стечении обстоятельств позволяет построить упрощенную формализованную модель конфликта, которую принято называть игрой и которая отличается от реальной конфликтной ситуации еще и тем, что ведется по вполне определенным правилам.

Если мы ставим перед собой задачу уточнить данные, полученные с помощью другого метода, или если мы хотим уточнить разбиения, мы можем не высчитывать циклы для всех точек, а взять только точки, которые приближены к нашему решению, и найти циклы только для них. Это значительно упрощает вычисления, но при этом остается возможность определить оптимальную коалицию. В этом случае мы избавляемся от необходимости перебирать многие варианты, которые могут никогда не пригодиться в реальных случаях или будут очень невыгодны участникам, если они узнают о других возможных вариантах раздела [5].

Для обработки большого потока информации и для создания системы, помогающей руководителю отдела принимать обоснованные решения, была разработана система подачи, контроля и обработки заявок для отдела проектирования и эксплуатации подсистемы АБИС – библиотечного Интернет-комплекса крупной библиотеки с необходимым математическим инструментарием для решения задач, возникающих в случае необходимости принятия решений.

Во время анализа была собрана информация о стоящих задачах и проблемах. Основной проблемой функционирования отдела было отсутствие документирования поступающих заявок на обслуживание как внутренними, так и внешними пользователями. Для руководителя отдела было выделено несколько областей – контроль работы отдела, контроль исполнения заявок и решение проблем выбора поставщиков услуг, оборудования и распределения ресурсов при коллективных заявках на них.