Смекни!
smekni.com

Расчёт одноконтурной системы автоматического регулирования (стр. 1 из 4)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

Государственное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет: Теплоэнергетический
Кафедра: Автоматизации теплоэнергетических процессов

Специальность: 220301 «Автоматизация технологических процессов и производств (в теплоэнергетике)»

Курсовая работа по ТАУ

Расчёт одноконтурной системы автоматического регулирования

Вариант №7

Исполнитель

студент гр.6241: Коростелев А.А.

Руководитель

преподаватель: Татарников А.А.

Томск 2007

Аннотация

В данной курсовой работе представлены расчёт и построение границы заданного запаса устойчивости, одноконтурной АСР с ПИ-регулятором, корневым методом с использованием РАФЧХ. Рассмотрен процесс определения оптимальных параметров настройки регулятора, произведены расчёт и построение переходных процессов в замкнутой АСР при возмущении f, идущем по каналу регулирующего воздействия, и при сигнале задания S. После каждого из графиков данных переходных процессов произведена оценка качества этих процессов.

Содержание

Введение……………………………………………………………………………………….……….4

1. Расчёт оптимальных параметров настройки(ОПН) ………………………………………….…..5

1.1 Расчёт и построение границы заданного запаса устойчивости АСР …………………..……...5

1.2 Обоснование и выбор ОПН регулятора……………………………….…………………….….10

2. Расчёт, построение и оценка качества переходного процесса по каналу S -Y ……………..…11

3. Расчёт, построение и оценка качества переходного процесса по каналу f -Y ……………...…15

Заключение…………………………………………………………………………………………....20

Введение

Данная курсовая работа посвящена расчёту одноконтурной системы автоматического регулирования. Для оценки систем регулирования с точки зрения их практической пригодности необходимо определить, в каких условиях эти системы можно использовать, какие настроечные параметры регулятора требуется установить, чтобы процесс регулирования, осуществляемый при помощи различных регуляторов систем, был оптимальным.

В настоящее время системы регулирования получили широкое применение в различных отраслях промышленности. В связи с этим проблема определения оптимальных параметров настройки регуляторов систем остаётся актуальной, даже несмотря на то, что разработано большое количество приёмов и методов, позволяющих решать эти проблемы. В частности, существует два инженерных метода расчёта систем регулирования: корневой (с использованием РАФЧХ) и частотный по максимуму АЧХ замкнутой системы (метод В.Я. Ротача).

В данной курсовой работе приводятся расчёта заданной АСР, исходные данные и структурная схема которой представлены в задании на выполнение курсовой работы. Первый пункт посвящен расчёту и построению границы заданного запаса устойчивости АСР с ПИ-регулятором и объектом регулирования, корневым методом. А также обоснование и выбор оптимальных параметров настройки. Второй пункт посвящён расчёту переходного процесса по каналу регулирующего воздействия S-Y, и прямой оценки качества этого процесса. Третий пункт содержит расчёт переходного процесса при возмущении f, идущему по каналу воздействия. А также произведены оценки прямых критериев качества.

1. Расчёт оптимальных параметров настройки (ОПН).

1.1 Расчёт и построение границы заданного запаса устойчивости АСР.

Для расчёта и построения границы заданного запаса устойчивости АСР с ПИ-регулятором, представленной на рисунке 1, воспользуемся корневым методом параметрического синтеза систем автоматического регулирования с применением расширенных амплитудно-фазовых частотных характеристик (РАФЧХ).

Используя исходные данные, приведенные в таблице 1, можем записать, что для заданной системы регулирования установлены следующие требования к запасу устойчивости системы: степень затухания переходного процесса в системе

.

Исходя из этого можно определить, зависимость между степенью затухания переходных процессов в заданной системе регулирования ψ и степенью колебательности переходных процессов в заданной системе регулирования m, по таблице соответствия оценок запаса устойчивости приведённой ниже.

0

0.75

0.80

0.265

0.90

0.95

0.998

1.0

m

0

0.221

0.265

0.305

0.366

0.478

1.0

Эта таблица была получена на основе следующего соотношения:

(1)

где ψ - степенью затухания;

m – степень колебательности;

Передаточная функция объекта регулирования согласно исходных данных определяется по формуле:

(2)

где Р – оператор Лапласа;

К – коэффициент передачи;

При n=2 выражение для

примет вид:

(3)

Используя данные таблицы 1 подставляем значения параметров в выражение (3). После подстановки значений параметров получаем окончательное выражение для передаточной функции объекта регулирования:

(4)

Определим расширенные частотные характеристики объекта регулирования. Расширенные частотные характеристики какого-либо звена можно получить подстановкой в передаточную функцию этого звена W(P), оператора

или
, в выражениях для оператора Лапласа ω – частота, с-1. В первом случае расчётные формулы метода обеспечивают получение границы заданной степени колебательности системы m, а во втором - получение границы заданной степени устойчивости системы
в пространстве параметров настройки регулятора.

Так как заданно значение колебательности, заменяем в формуле (4) оператор

, в результате получаем выражение для РАФЧХ объекта регулирования:

(5)

Используя математический пакет MAthCad, предварительно задав начальное значение частоты

=0 с-1 и шаг по частоте
с-1, рассчитываем расширенные частотные характеристики объекта при изменении частоты до ω=0,20 с-1.

Расширенная вещественная частотная характеристика (РВЧХ):

Reоб(m,ω)=Re(Wоб(m,iω)) (6)

Расширенная мнимая частотная характеристика (РМЧХ):

Imоб(m,ω)=Im(Wоб(m,iω)) (7)

Расширенная амплитудно-частотная характеристика (РАЧХ)

(8)

Расширенная фазо-частотная характеристика (РФЧХ):

(9)

Результаты расчётов сведём в таблицу 2, приведенную ниже.

Таблица 2 – Расширенные частотные характеристики объекта регулирования

частота ω, с-1

Reоб(m,ω)

Imоб(m,ω)

Аоб(m,ω)

φоб(m,ω), рад

0,001

1.548

-0.178

1.558

-0.114

0,003

1.562

-0.47

1.631

-0.292

0,004

1.493

-0.772

1.681

-0.477

0,006

1.341

-1.049

1.702

-0.664

0,007

1.118

-1.273

1.695

-0.85

0,008

0.852

-1.425

1.648

-1.032

0.01

0.571

-1.499

1.604

-1.207

0.011

0.301

-1.501

1.531

-1.373

Окончание таблицы 2