2011 г.
Содержание
Введение……………………………………………………………….…….……3
Заключение………………………………………………………………….……21
Список использованной литературы………………………………….………..24
Струнная теория - одна из наиболее восхитительных и глубоких теорий в современной теоретической физике. К сожалению, это все же достаточно тяжелая для понимания вещь, понять которую можно лишь с позиций квантовой теории поля. Не повредит пониманию и знание математики типа теории групп, дифференциальной геометрии и т.д. Таким образом, для большинства она остается "вещью в себе".
Я выбрала эту тему, потому что струнная теория - динамично развивающаяся область знаний и по сей день; каждый день приносит что-нибудь новое о ней. Эта область знаний достаточно интересна, поскольку мы не сталкиваемся с ней в обыденные дни. Целью данного доклада является проявить интерес слушателей к вопросам, приведенным ниже. Пока мы не знаем точно, описывает ли струнная теория нашу Вселенную, и в каких пределах. Но она вполне может ее описывать, что можно увидеть в данном докладе.
Хотя Стандартная Модель и описывает большинство явлений, которые мы можем наблюдать с использованием современных ускорителей, все же многие вопросы, касающиеся Природы, остаются без ответа. Цель современной теоретической физики состоит как раз в объединении описаний Вселенной. Исторически, этот путь довольно удачен. Например, Специальная Теория Относительности Эйнштейна объединила электричество и магнетизм в электромагнитную силу. В работе Глэшоу, Вайнберга и Салама, получившей Нобелевскую премию 1979 года, показано, что электромагнитное и слабое взаимодействия могут быть объединены в электрослабое. Далее, есть все основания полагать, что все силы в рамках Стандартной Модели в конечном итоге объединяются. Если мы начнем сравнивать сильное и электрослабое взаимодействия, то нам придется уходить в области все больших энергий, пока они не сравняются по силе в районе
ГэВ. Гравитация же присоединится при энергиях порядка .Цель теории струн состоит как раз в объяснении знака "? " на диаграмме выше.
Характерный энергетический масштаб для квантовой гравитации называется Планковской массой и выражается через постоянную Планка, скорость света и гравитационную постоянную следующим образом:
Как раз на эти вопросы я и попытаюсь ответить в своей работе.
Мы привыкли думать об элементарных частицах (типа электрона) как о точечных 0-мерных объектах. Несколько более общим является понятие фундаментальных струн как 1-мерных объектов. Они бесконечно тонкие, а длина их порядка
. Но это просто ничтожно мало по сравнению с длинами, с которыми мы обычно имеем дело, так что можно считать, что они практически точечные. Но, как мы увидим, их струнная природа довольно важна.Струны бывают открытыми и замкнутыми. Двигаясь в пространстве-времени, они покрывают поверхность, называемую мировым листом.
Эти струны имеют определенные колебательные моды, которые определяют присущие частице квантовые числа, такие, как масса, спин, и т.д.. Основная идея состоит в том, что каждая мода несет в себе набор квантовых чисел, отвечающих определенному типу частиц. Это и есть окончательное объединение - все частицы могут быть описаны через один объект - струну !
В качестве примера рассмотрим замкнутую струну, которая выглядит так:
Такая струна отвечает безмассовому гравитону со спином 2 - частице, переносящей гравитационное взаимодействие. Кстати, это одна из особенностей струнной теории - она естественно и неизбежно включает в себя гравитацию как одно из фундаментальных взаимодействий.
Струны взаимодействуют путем деления и слияния. Например, аннигиляция двух замкнутых струн в одну замкнутую выглядит следующим образом:
Отметим, что поверхность мирового листа - гладкая поверхность. Из этого следует еще одно "хорошее" свойство струнной теории - в ней нет ряда расходимостей, присущих квантовой теории поля с точечными частицами. Фейнмановская диаграмма для такого же процесса
содержит топологическую сингулярность в точке взаимодействия.
Если мы "склеим" два простейших струнных взаимодействия между собой, то получим процесс, в котором две замкнутые струны взаимодействуют через объединение в промежуточную замкнутую струну, которая потом опять распадается на две:
Этот основной вклад в процесс взаимодействия называется древесным приближением . Для того, чтобы вычислить квантовомеханические амплитуды процессов используя теорию возмущений, добавляют вклады от квантовых процессов высших порядков. Теория возмущений дает хорошие результаты, так как вклады становятся все меньше и меньше, когда мы используем все более высшие порядки. Даже если вычислить лишь первые несколько диаграмм, то можно получить достаточно точные результаты. В струнной теории высшие порядки отвечают большему числу дыр (или "ручек") на мировых листах.
Хорошо в этом подходе то, что каждому порядку теории возмущения соответствует только одна диаграмма (например, в теории поля с точечными частицами число диаграмм растет экспоненциально в высших порядках). Плохо же то, что точные расчеты диаграмм с более чем двумя дырами очень сложны по причине сложности математического аппарата, используемого при работе с подобными поверхностями. Теория возмущений очень полезна при исследовании процессов со слабой связью, и большая часть открытий в области физики элементарных частиц и струнной теории связана именно с ней. Однако, все это еще далеко от завершения. Ответы на самые глубокие вопросы теории можно будет получить лишь после того, как будет завершено точное описание этой теории.
У струн могут быть совершенно произвольные условия на границе. Например, замкнутая струна имеет периодичные граничные условия (струна "переходит сама в себя"). У открытых же струн могут быть два типа граничных условий - условия Неймана и условия Дирихле. В первом случае конец струны может свободно двигаться, правда, не унося при этом импульса. Во втором же случае конец струны может двигаться по некоторому многообразию. Это многообразие и называется D-браной или Dp-браной (при использовании второго обозначения 'p' - целое число, характеризующее число пространственных измерений многообразия). Пример - две струны, у которых один или оба конца закреплены на 2-мерной D-бране или D2-бране:
D-браны могут иметь число пространственных измерений от -1 до числа пространственных измерений нашего пространства-времени. Например, в теории суперструн 10 измерений - 9 пространственных и одно временное. Таким образом, в суперструнах максимум что может существовать, это D9-брана. Отметим, что в этом случае концы струн фиксированы на многообразии, покрывающем все пространство, поэтому они могут двигаться везде, так что на самом-то деле наложено условие Неймана ! В случае p=-1 все пространственные и временные координаты фиксированы, и такая конфигурация называется инстантоном или D-инстантоном. Если p=0, то все пространственные координаты фиксированы, и конец струны может существовать лишь в одной единственной точке в пространстве, так что D0-браны зачастую называют D-частицами. Совершенно аналогично D1-браны называют D-струнами. Кстати, само слово 'брана' произошло от слова 'мембрана', которым называют 2-мерные браны, или 2-браны.