[x1-1x2-1x3-1]. =p1p2p3p4 a product of four primitive elements.
Note that the last primitive element p4=x1-1x2-1x3-1 can be arbitrary.
Предложение 5. Any element of a free metabelian group Mn can be presented as a product of not more then four primitive elements.
Доказательство. Case 1. Consider an element
An element from derived subgroup can be presented as a product of not more then four primitive elements with a fixed one of them:
Then
Case 2. If
Списоклитературы
Bachmuth S. Automorphisms of free metabelian groups // Trans.Amer.Math.Soc. 1965. V.118. P. 93-104.
Линдон Р., Шупп П. Комбинаторная теория групп. М.: Мир, 1980.