Припустимо, що
задає траекторію зайнятості, яка вважається оптимальною. Оскількі пропозиція робочої сили відповідає траекторії оптимальний пропорційний рівень зайнятості визначається відношенням . Це відношення, яке не перевищує одиницю відображає оптимальний баланс між безробіттям та інфляцією. Рівняння (2.1.1) базується на припущенні, що при оптимальному рівні зайнятості пропозиція грошей постійна і рівна , в противному випадку пропорційне перевищення над є зростаючою функцією пропорційного перевищення над . Тепер замість рівняння (1.10) використовується рівняння (2.1.1), так, що модель включає рівняння (1.1) — (1.9) і (2.1.1).З (1.7), (1.8) і (2.1.1) отримаємо
(2.1.2) |
Тоді з (1.12) та (2.1.2) отримаємо
(2.1.3) |
що разом з (1.4) та (1.5) дає
(2.1.4) |
Одночасно також маємо
(2.1.5) | |
(2.1.6) |
що аналогічно відповідно (1.16) та (1.17).
Траекторія зміни змінних
та визначається початковими значеннями змінних і системою рівнянь (2.1.4) — (2.1.6). Частинний розв’язок цієї системи має вигляд(2.1.7) | |
(2.1.8) | |
(2.1.9) |
де
(2.1.10) | |
(2.1.11) | |
(2.1.12) |
Із (1.4), (2.1.8), (2.1.9) та (2.1.12) випливає,що рівноважна траекторія росту зайнятості визначається рівнянням
(2.1.13) |
де
Таким чином, ця траекторія не пов’язана з оптимальною. Дійсно, порівняння (1.28) з (2.1.13) показує, що рівноважна траекторія росту зайнятості співпадає з траекторією, що відповідає постійній пропозиції грошей. Це неприйнятний наслідок політики, що описується рівнянням (2.1.1). Розглянемо тепер вплив цієї політики на стійкість системи.
З рівнянь (2.1.4) — (2.1.6) та (2.1.10) — (2.1.13) маємо
(2.1.14) | |
(2.1.15) | |
(2.1.16) |
де
Точні траекторії зміни змінних
визначаються початковими значеннями цих змінних і системою рівнянь (2.1.4) — (2.1.6) та (2.1.10) — (2.1.13), а наближені траекторії – тими ж початковими значеннями і системою лінійних рівнянь, які включають (2.1.14), (2.1.15) та(2.1.17) |
Характеристичними коренями матриці коефіцієнтів останньої системи є корені рівняння
, | (2.1.18) |
де
Зауважимо, що
, , і при умові, що частинна похідна . Отже, хоч політика задана рівнянням (2.1.1) не впливає на рівноважну траекторію зайнятості (на відміну від політики, що передбачає постійну пропозицію грошей), вона може справляти стабілізуючу дію.Припустимо, наприклад, що
; ; ; ; ; ; ; ; .При цих умовах і при корені рівняння (2.1.18) рівні ; , а при ці корені рівні ; ; . Тобто у даному випадку вплив грошової політики приводить до поступової ліквідації ціклу і більш швидкої збіжності до довгострокового тренду.Розглянемо тепер політику, яка визначається рівнянням
(2.1.19) |
З цього рівняння випливає, що при оптимальному рівні зайнятості пропозиція грошей постійна. В протилежному випадку пропорційний темп росту пропозиції грошей, є зростаючою функцією пропорціонального перевищення
над . Тепер модель описується рівняннями (1.1), (1.9) та (2.1.19).З (1.7), (1.8) та (1.12) маємо
(2.1.20) |
що у сукупності з (1.4) та (1.5) дає
(2.1.21) |
Далі, з (1.4) та (1.19) маємо
(2.1.22) |
що разом з (2.1.5) дає
(2.1.23) |
Траекторії зміни
та визначаються початковими значеннями змінних та системою рівнянь, що включає (2.1.6), (2.1.21) та (2.1.23). (Власні траекторії та можна отримати, використовуючи (2.1.5) та (2.1.22).) Частинний розв’язок системи має вигляд