Смекни!
smekni.com

Математичнi моделi iнфляцii /Укр./ (стр. 5 из 8)

(2.1.24)
(2.1.25)
(2.1.26)

де

(2.1.27)
(2.1.28)
(2.1.29)

P (1.4), (2.1.25), (2.1.26), (2.1.28) та (2.1.29) випливає, що рівноважна траекторі росту зайнятості визначається рівнянням

,
(2.1.30)

де

Крім того маємо

(2.1.31)

Зміст (2.1.31) полягає в тому, що рівноважний пропорційний рівень зайнятості

, при політиці, заданій рівнянням (2.1.19) є зваженим середнім геометричним оптимального пропорційного рівня зайнятості
та рівноважного пропорційного рівня зайнятості при умові постійної пропозиції грошей. [див. (1.28) та (2.1.13)]. Різниця між
та
тим менша, чим більше
і прямує до нуля коли
прямує до нескінченості. таким Чином політика (2.1.19) веде до зменшення, але не усуває повністю відмінності між рівноважним і оптимальним пропорційними рівнями зайнатості. В цьому відношенні вона більш ефективна, ніж політика (2.1.1), хоча і її не можна вважати цілко задовільною.

Слід зауважити, що при політиці (2.1.12) пропозиція грошей продовжує змінюватись, поки рівень зайнятості не досягає оптимуму. Тому, досить несподівано, що ця політика, не забазпечує рівності

. Це пояснюється тим, що у встановленому стані системи ставка заробітної плати змінюється зі швидкістю, яка цілком компенсує вплив на пропорційний рівень зайнятості зміни пропозиції грошей. Пропорційні темпи росту ставки заробітної плати та пропозиції грошей в усталеному стані системи легко отримати з рівняння (2.1.5), (2.1.19), (2.1.25) та (2.1.30). Вони визначаються виразами
(2.1.32)
(2.1.33)

З (2.1.6), (2.1.21), (2.1.23) та (2.1.27) — (2.1.29) маємо

(2.1.34)
(2.1.35)
(2.1.36)

де

Точні траекторії

визначаються початковими значенням цих величін та рівняннями (2.1.32) — (2.1.33), а наближені — тими ж початковими значеннями та системою лінійних рівнянь (2.1.34), (2.1.35) та
(2.1.37)

Характеристичними коренями матриці коефіцієнтів останньої системи є корені рівняння

,
(2.1.18)

де

Зауважимо, що

не залежить від
і що навіть при умові, коли
, похідна
може бути від’ємною. Цей результат демонструє, що політика (2.1.19) менш ефективна з точки зору стабілізації системи, ніж політика (2.1.1).

Припустимо, наприклад, що

;
;
;
;
;
;
;
;
.При цих умовах і при
корені рівняння (2.1.18) рівні
;
, а при
ці корені рівні
;
. Тобто у даному випадку грошова політика не справляє особливого демпфуючого впливу на циклічний характер розвитку економіки. Її основний ефект полягає в зменшенні різниці між рівноважним та оптимальним пропорційними рівнями зайнятості та в зменшенні тривалості періода циклу.

Розглянемо тепер політику, яка визначається рівнянням

(2.1.19)

З цього рівняння випливає, що пропорційний темп росту пропозиції грошей зменшується, залишається постійним або зростає, в залежності від того, більший, рівний або менший оптимального фактичний рівень зайнятості. Вцьому випадку модельописується рівняннями (1.1) — (1.9) та (2.1.39).

Введемо нову змінну

, яка визначається співвідношенням
(2.1.40)

Тоді з (2.1.5) та (2.1.40) маємо

(2.1.41)

З (1.4), (2.1.29) та (2.1.40) отримаємо

(2.1.42)

Траекторії зміни змінних

та
визначаються початковими значеннями цих змінних та системою рівнянь, що включає (2.1.6), (2.1.21), (2.1.41) та (2.1.42). Ця система має частинний розв’язок:
(2.1.43)
(2.1.44)
(2.1.45)
(2.1.46)

де

(2.1.47)
(2.1.48)
(2.1.49)
(2.1.50)

З (1.4), (2.1.44), (2.1.45), (2.1.48) та (2.1.49) випливає, що рівноважна траекторія росту зайнятості визначається рівнянням

.
(6.1.51)

Таким чином, рівноважна та оптимальна траекторія зайнятості співпадають. В цьому відношенні політика (2.1.39) ефективніша, за політики (2.1.1) та (2.1.19).