Смекни!
smekni.com

Анализ антонимических отношений в подъязыке математики английского языка (стр. 15 из 16)

При анализе словарей [44–53] были произведены следующие выводы:

1. В английском и русском языках присутствует больше всего антонимов образованных с помощью частицы “не” (“non”) для прилагательных и существительных, для глаголов частицы “не” и “not”.

2. Больше всего антонимов наблюдается среди прилагательных (в русском и английском языках) и существительных, выступающих в роли определения (в английском языке).

3. Антонимичные пары глаголов одинаковы для всех рассмотренных отраслей математики. Наиболее часто из них употребляются является–не является, принадлежит – не принадлежит, входит – не входит, существует – не существует. Особенностью пары принадлежит – не принадлежит, является тот факт, что она представлена не в виде слов, а специальными математическими знаками (

соответственно).

4. Наиболее часто встречающаяся антонимичная пара прилагательных: любой – единственный специфична только для математических текстов. В художественных текстах и речи антонимом любой является никакой. Пара любой – единственный всегда представлена неявно и обозначается с помощью кванторов всеобщности (

) и существования (
).

В математическом тексте присутствуют как градуальные (отрицательный – неположительный – неотрицательный – положительный), так и бинарные антонимы (непрерывный – разрывный, константа – переменная).

В математическом тексте сильно проявлены контекстуальные антонимы. Разберем на примерах. Антоним простой (когда речь идет о натуральных числах) – составной, но антонимами пара простой–составной может являться только, когда речь идет о натуральных числах больше 1, в противном случае антонимом к простому является составной или 1 т.е. сразу два случая и только в процессе исследования выясняется, какой случай подходит. Приведем еще один пример. Когда речь идет о евклидовой плоскости, то две различные прямые могут быть либо параллельными, либо пересекающимися. В проективной плоскости понятия параллельной прямой нет, и так как любые две прямые пересекаются, то и нет смысла употреблять слово пересекающиеся. В случае если не известно являются ли прямые различными, то возникает еще один случай – совпадающиеся прямые.

Еще одной особенностью антонимов в математическом тексте, является синонимия антонимов. Например, возьмем две пары антонимов: открытый – неоткрытый, замкнутый – незамкнутый. Слова незамкнутый и неоткрытый по своему значению обозначают одно и тоже, поэтому являются синонимами. И получается следующая шкала: открытый – неоткрытый (незамкнутый) – замкнутый. А пару неоткрытый – незамкнутый можно рассматривать как конверсив.

Следующей особенность антонимии является тот факт, что в математических текстах распространен эффект, подобный антонимам многозначных слов, но имеющий совсем другую структуру. Например, антонимами компактный выступают неограниченный и незамкнутый. Компактный означает замкнутый и ограниченный. Если множество незамкнутое или неограниченное, то оно не является компактом. В этом проявляется отличие от многозначных слов: слово выражает все свои значения одновременно. Аналогично слову компактный, следующие слова так же имеют несколько антонимов: устойчивое, липшицева, изоморфный, гомеоморфный, эквивалентность и др.

Антонимия предложений, абзацев и слов, со составным логическим смыслом, подчиняется простым законам логики.

Как уже упоминалось выше, единственная функция антонимов в математическом тексте – это построение отрицания высказываний и суждений. Необходимость в этом возникает в следующих случаях:

1. Построение контр-примеров. Если у автора есть гипотеза, которую довольно сложно доказать можно построить отрицание этой гипотезы и найти пример удовлетворяющий отрицанию. Перечислим самые известные примеры построенные таким образом: множество лебеговой меры нуль, обладающей мощностью континуума (множество Кантора); непрерывная функция нигде не дифференцируемая (функция Неймана); всюду разрывная функция Дирехле.

2. Доказательство противоположной теоремы вместо простой.

3. Доказательство теоремы от противного. Примеры можно найти в любом учебнике школьной математики, математического анализа и алгебры.

4. Доказательство рассмотрения всевозможных случаев. В данном случае используются градуальные антонимы. Примеры можно найти в геометрии. Простейший пример теорема Пика.


ВЫВОДЫ ПО ТРЕТЬЕЙ ГЛАВЕ

1. Антонимы в логической части математического текста выступают только как средство выражения категории “противоположность”. Согласно закону исключения третьего, большинство антонимов являются бинарными.

2. Все антонимы являются ситуационными, существование противоположности зависит не только от рассматриваемой конкретной теории или задачи, но и от вида логики используемой в данном контексте.

3. Большинство антонимов выражают отрицание, которое строится в соответствие законов де Моргана.

4. С лексической точки зрения большинство антонимов — прилагательные. Наиболее часто при образовании антонимов используется частица не или приставка не- (not и non-).


ЗАКЛЮЧЕНИЕ

В результате исследования англоязычного математического текста можно сделать вывод что, антонимия наблюдается, как среди математических терминов, так и среди общелитературной лексики. Для антонимии в математической лексике характерны следующие черты:

1. наиболее часто антонимия наблюдается среди прилагательных, и, как правило, антонимы в данном случае образуются с помощью приставок a-, anti-, non-, dis-, il-, im-, in-, un-, ir- и суффиксов -less, и иногда –ful;

2. для глаголов образование антонимов наблюдается только с помощью частицы notили приставки non-, разнокорневых антонимов среди глаголов нет;

3. среди существительных антонимов практически не наблюдается;

4. антонимы в математической лексике выражают противоположность, и, ввиду того, что обычно в математике используется классическая логика, использующая закон исключения третьего, антонимы выражают не просто противоположность, а отрицание, хотя при этом антонимы являются неинформативными;

5. как правило, антонимы среди прилагательных имеют сложное логическое строение, их семантика выражается с помощью конъюнкции, а противоположное высказывание — раскрывается с помощью дизъюнкции; поэтому для прилагательных характерно существование нескольких несинонимичных антонимов;

6. для большинства математических антонимов характерно существование эквиваленций в их семантике (иногда в целом, иногда при рассмотрении конкретных математических структур), поэтому для их отрицаний так же характерна эквивалентность, хотя эквивалентность проявляется на уровне математической теории, а не на уровне семантики слова;

7. для некоторых антонимичных пар характерна контекстуальность: в одном контексте (в определенной математической структуре) слово может иметь антоним, а в другом контексте (в другой математической структуре) слово уже не обладает антонимом; иногда проверка существования антонима требует математического исследования;

8. при использовании неклассической логики (т.е. в конструктивной и интуиционистской математике) многие антонимичные пары теряют свои эквиваленции, либо приобретают новые.

Таким образом для антонимов в подъязыке математики характерны особенности, присущие только подъязыку математики.

Анализируя литературу по исследованию антонимов, можно видеть, что данные особенности не изучались вовсе, хотя они имеют значение для

· процесса автоматизации доказательства и верификации теорем, как на уровне двустороннего перевода с естественного языка на формальный язык математической логики, так и на уровне двустороннего перевода на формализированный язык программы;

· построения баз данных математических знаний;

· автоматизации поиска непротиворечивости и полноты аксиоматики математической теории и т.д.

· Просматривая труды конференций в области искусственного интеллекта, можно заметить возрастающий интерес к вышеперечисленным проблемам, и в ближайшем будущем следует ожидать работ по данной тематике.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 BibliographyofAntonymy(EnglishSources)// http://www.f.waseda.jp/vicky/complexica/biblio.html (май2008)

2 Bibliography of Antonymy Sources written in languages other than English// http://www.f.waseda.jp/vicky/complexica/nonEnglish.html (май2008)

3 Степанова Л.А. Изучение экономического сознания методом семантического дифференциала/ Л.А. Степанова,— Социологические исследования. 1992. № 8. С. 50—63.

4 Математика в социологии: моделирование и обработка информации. М.: Мир, 1977.—500с.

5 Осгуд Ч., Приложение методики семантического дифференциала к исследованиям по эстетике и смежным проблемам/Ч. Осгуд, Дж. Суси, П. Танненбаум // Семиотика и искусствометрия. М.: Мир, 1972.

6 Osgood, C.E., Suci, G., & Tannenbaum, P. (1957) Themeasurementofmeaning. Urbana, IL: UniversityofIllinoisPress

7 Волохонский В.Л., Влияние пространственно-временных эффектов на результаты семантического дифференциала / Сборник лучших работ выпускников факультета психологии СПбГУ 2002 года. СПб.: Издательство С.-Петербургского университета, 2003. – С. 4-10.

8 Петренко В.Ф., Психосемантика сознания/ В.Ф. Петренко,— М.: МГУ, 1987. 207 с.

9 Комиссаров В.Н., Слово о переводе/ В.Н. Комиссаров,— М. 1973-211с.

10 Микушевич В., Вопросы теории художественного перевода/ В. Микушевич,— М., 1970.—428с.

11 K. Vershinin, A. Paskevich., ForTheL — the Language of Formal Theories// II Information Theories and Applications. – 2000. – V. 7-3. – P. 121-127.

12 A. Degtyarev, A. Lyaletski, M. Morokhovets, Evidence Algorithm and Sequent Logical Inference Search // Lecture Notes in Artificial Intelligence. – 1999. – V. 1705. – P. 44-61.

13 A. Degtyarev, A. Lyaletski, M. Morokhovets. On the EA-Style Integrated Processing of Self-Contained Mathematical Texts // Symbolic Computation and Automated Reasoning (Proc. of CALCULEMUS-2000 Symposium). – A.K. Peters, Ltd., USA – 2001. – P.126-141.