Существуют три возможных способа укрепить место соединения стебелька и клетки, и, что интересно, все они реализованы простейшими. Первый вариант — чашевидное расширение вершины стебелька, закрывающее основание клетки. Такое расширение известно у инфузорий (сукторий и перитрих) и называется полураковиной, назначение которой раньше убедительно никто не мог объяснить. В дальнейшем из полураковины сформировалась раковина, покрывающая клетку полностью [5]. Утолщение стебелька иной формы (физон) также известно у инфузорий и тоже выполняет функцию защиты зоны соединения. Второй вариант — внедрение верхней части стебелька внутрь клетки. Подобная структура (эндостиль) есть у сидячих инфузорий — хонотрих и сукторий. Третий возможный вариант — внедрение базальной части клетки внутрь стебелька. Он также реализован у инфузорий (перитрих) в виде проходящего по стебельку сократимого выроста клетки — спазмонемы. Первоначальной функцией спазмонемы, вероятно, было обеспечение прочности соединения стебелька и клетки, но в этом выросте оказались структуры, которые позволили стебельку сокращаться (микротрубочки и цистерны эндоплазматической сети).
Для сидячих простейших (особенно инфузорий) характерно разнообразие структур, защищающих соединение стебелька и клетки. Они развиты тем больше, чем в более экстремальных гидродинамических условиях обитает организм. У перитрихи Pyxidiella tectiformis, обитающей на жабрах ельца, стебелек снабжен асимметричной полураковиной ѕ скорее свидетельство адаптации к гидродинамическому упору, чем защита от хищников. Сходную функцию, вероятно, выполняет утолщение стебелька (физон) другой перитрихи Foisnerella physonica, обитающей на жабрах морской изоподы Gnorimosphaeroma noblei. У хонотрихи Oxychona multifida с рачков рода Nebalia проникающий внутрь клетки вырост стебелька (эндостиль) занимает почти треть клетки, обеспечивая высокую прочность соединения.
Таким образом, у сидячих простейших (в первую очередь инфузорий) сформировалось удивительное разнообразие прикрепительных органелл, которые позволили им приспособиться к гидродинамическим нагрузкам.
Известны и другие формы адаптации простейших к сидячему образу жизни — например, приспособление к особенностям структуры поверхности субстрата (это относится к видам, которые поселяются в сочленениях тела или конечностей хозяев-членистоногих) или усиление опорной и защитной функции покровов клетки (в частности, у инфузорий хонотрих и сукторий усиление функции кортекса привело к образованию кутикулы *, часто снабженной различными шипами и другими образованиями).
* Кутикула (от лат. cuticula — кожица) — плотный внеклеточный покров на поверхности эпителия многоклеточных животных. Для простейших принято использовать другой термин — пелликула, однако для сидячих инфузорий, которых мы рассматриваем, характерно усиление наружных структур, и у них формируется именно кутикула (а пелликула была еще у их предков и никуда не делась). Этот термин уже общепринят у протозоологов, и как раз о возникновении этой новой структуры у наших подопечных (которая есть еще и у кишечных инфузорий) идет речь [6]. Более того, полагают, что у автотрофных организмов переход к сидячему образу жизни привел к появлению у них клеточной оболочки, что в свою очередь считается одной из предпосылок возникновения многоклеточности у растений [7].
Наконец, вспомним и о собранных нами водяных жуках Hyphydrus ovatus, покрытых инфузориями Discophrya lichtensteinii, у которых длина стебелька зависела от их локализации на теле насекомого. Помимо тех гидродинамических нагрузок, которые анализировались британскими специалистами, эти инфузории испытывают дополнительные неблагоприятные нагрузки — турбулентность и нестационарность пограничного слоя. Чтобы справиться с нестационарностью, у них сформировался гибкий стебелек, позволяющий простейшему при возрастании гидродинамического упора отклоняться и прижиматься к субстрату. Приспособлением к турбулентности, по всей видимости, служит удлинение гибкого стебелька, что дает возможность двигаться вместе с обтекающей жидкостью, подобно тому, как длинные талломы морских водорослей изгибаются вместе с волнами прибоя.
С переходом к прикрепленному образу жизни связано и формирование специализированных органелл захвата и поглощения пищи простейших, но такие адаптации только косвенно связаны с гидродинамическими нагрузками.
* * *
Нетрудно заметить, что у простейших неподвижный образ жизни не связан, как у многоклеточных, с утратой каких-либо структур. Наоборот, разнообразие условий в пограничном слое вызвало развитие дополнительных органелл (в особенности прикрепительных). Более того, произошло усиление функции органелл питания, что привело к увеличению размеров клетки. Несомненно, все эти изменения имели прогрессивный характер [8].
Поселяясь в разных участках пограничного слоя и приспосабливаясь к таким условиям, протисты существенно снизили конкуренцию за субстрат и пищу. Например, разные виды сукторий, которые питаются свободноплавающими инфузориями, при поселении на неорганических субстратах образуют несколько групп по степени высоты над субстратом. Так они, вероятно, делят трофическую нишу. За счет различных адаптаций к напряжению сдвига простейшие по-разному распределяются и по поверхности субстрат. Таким образом, структура пограничного слоя определяет и пространственную структуру соответствующих сообществ.
Безусловно, это пока еще только схематическая картина условий обитания простейших на обтекаемой поверхности. Но уже первые попытки подойти к изучению сидячих протист с позиций гидродинамики позволили наполнить более конкретным содержанием формулировку “сидячий образ жизни простейших”.
Литература
1. Silvester N.R., Sleigh M.A. // Freshwater Biology. 1985. V.15. Р.433—448.
2. Довгаль И.В., Koчин В.А. // Вестн. зоологии. 1995. Т.29. №4. С.19—24.
3. Довгаль И.В., Koчин В.А. // Журн. общ. Биологии. 1997. Т.58. №2. С.67—74.
4. Шлихтинг Г. Теория пограничного слоя. М., 1974.
5. Довгаль И.В. // Вестн. зоологии. 1998. Т.32. №2. С.18—29.
6. Герасимова З.П.// Зоол. журн. 1989. Т.LXVIII. Вып.4. С.5—17.
7. Масюк Н.П. Эволюционные аспекты морфологии эукариотических водорослей. Киев, 1993.
8. Довгаль И.В. // Журн. общ. биологии. 2000. Т.61. №3. С.290—304.