Смекни!
smekni.com

Escapism And Virtual Reality Essay Research Paper (стр. 2 из 2)

control the operation of the computer. Escapist thoughts begin when the

operations of the programs have to be understood. In many cases, it is either

too risky or time-consuming to set the programs into action without considering

their likely consequences (in minute detail) first. Such detailed comprehension

of the action of a program often requires the person constructing the lists of

instructions (the programmer) to enter a separate world, where the symbols and

values of the program have their physical counterparts. Variables take on

emotional significance and routines have their purpose described in graphic

`action’ language. A cursory examination of most programmers’ programs will

reveal this in the comments that are left to help them understand each program’s

purpose. Interestingly, even apparently unemotional people visualise their

programs in this anthropomorphic manner Weizenbaum76,Catt73 .

Without this ability to trace the action of a program before it is performed in

real life, the computing industry would cease to exist. This ability is so

closely related to what we do naturally and call `escapism’, that the two have

begun to merge for many people involved in the construction of programs. For

some, what began as work has become what is done for pleasurable relaxation,

which is a fortunate discovery for large computer-related businesses. The need

for time-clocks and foremen has been largely eliminated, since the workers look

forward to coming to work, often to escape the mundane aspect of reality.

There are problems associated with this form of work motivation. One major

discovery is that it can be difficult to work as a team in this kind of activity.

Assigning each programmer a section of the project is the usual solution, but

maintaining a coherent grasp of the project’s state then becomes increasingly

difficult. Indeed, this problem means that there are now computers whose design

cannot be completely understood by one person. Misunderstandings that result

from this problem and the inherent ambiguities of human languages are often the

cause of long delays in completion of projects involving computers. (The current

statistics are that cost over-runs of 300 are not uncommon, especially for

larger projects and time over-runs of 50 are common SWEng ).

Another common problem is that of developed social inadequacy amongst groups of

programmers and their businesses. The awkwardness of communicating complex ideas

to other (especially non-technical) members of the group can lead them to avoid

other people in person and to communicate solely by messages and manuals

(whether electronic or paper).

Up to now, most absorption of the information necessary to `escape’ in this

fashion has been from a small number of sources located in an environment full

of other distractions. The introduction of Virtual Reality, especially with

regard to the construction of programs, will eliminate many of these external

distractions. In return, it will provide a `concentrated’ version of the world

in which the programmer is working. The flexible nature of VR means that

abstract objects such as programs can be viewed in reality (on the goggles’

screens) in any format at all. Most likely, they will be viewed in a manner that

is significant for each individual programmer, corresponding to how he or she

views programs when they have escaped into the world that contains them. Thus,

what were originally only abstract thoughts in one human mind can now be made

real and repeatable and may be distributed in a form that has meaning for other

people. The difference between this and books or paintings is the amount of

information that can be conveyed and the flexibility with which it can be

constructed.

The Dangers of Virtual Reality

As implied above, the uses of Virtual Reality can be understood in two ways.

Firstly, VR can be viewed as a more effective way of communicating concepts,

abstract or concrete, to other people. For example, as a teaching tool, a VR

interface to a database of operation techniques would permit a surgeon to try

out different approaches on the same simulated patient or to teach a junior

basic techniques. An architect might use a VR interface to allow clients to

walk around a building that exists only in the design stage ArchieMag .

Secondly, VR can be used as a visualisation tool for each individual. Our own

preferences could be added to a VR system to such an extent that anyone else

using it would be baffled by the range of personalised symbols and concepts. An

analogy to this would be redefining all the keys on a typewriter for each typist.

This would be a direct extension of our ability to conceive objects, since the

machine would deal with much of the tedious notation and the many symbols

currently necessary in complex subjects such as nuclear physics. In this form,

VR would provide artificial support for a human mind’s native abilities of

construct building and imagination.

It is the second view of VR, and derivations from it, that are of concern to

many experts. On a smaller scale, the artificial support of mental activities

has shown that once support is available, the mind tends to become lazy about

developing what is already present. The classic case of this is, of course,

electronic calculators. The basic tedious arithmetic that is necessary to solve

a complicated problem in physics or mathematics is the same whether performed by

machine or human, and in fact plays very little part in understanding (or

discovering) the concepts that lie behind the problem. However, if the ability

to perform basic arithmetic at the lowest level is neglected, then the ability

to cope with more complex problems does seem to be impaired in some fashion.

Another example is the ability to spell words correctly. A mis-spelt word only

rarely alters the semantic content of a piece of writing, yet obvious idleness

or inability in correct use of the small words used to construct larger concepts

often leaves the reader with a sense of unease as to the validity of the larger

concept.

Extending the examples, a worrying prediction is that the extensive use of VR to

support our own internal visualisations of concepts would reduce our ability to

perform abstract and escapist thoughts without the machine’s presence. This

would be evident in a massive upsurge in computer-related entertainment, both in

games and interactive entertainment and would be accompanied by a reduction of

the appreciation and study of written literature, since the effort required to

imagine the contents would be more than was considered now reasonable.

Another danger of VR is its potential medical applications. If a convincing set

of images and sound can be collected, it might become possible to treat victims

of trauma or brain-injured people by providing a `safe’ VR environment for them

to recover in. As noted Whalley , there are several difficult ethical

decisions associated with this sort of work. Firstly, the decision to disconnect

a chronically disturbed patient from VR would become analogous to removing pain-

killers from a patient in chronic pain. Another problem is that since much of

what we perceive as ourselves is due to the way that we react to stimuli,

whatever the VR creator defines as the available stimuli become the limiting

extent of our reactions. Our individuality would be reduced and our innate human

flexibility with it. To quote Whalley

Whalley directly,

“virtual reality devices may possess the potential to

distort substantially [those] patients’ own perceptions of

themselves and how others see them. Such distortions may persist

and may not necessarily be universally welcomed. In our present

ignorance about the lasting effects of these devices, it is

certainly impossible to advise anyone, not only mental

patients, of the likely hazards of their use.”

Following on from these thoughts, one can imagine many other abuses of VR.

`Mental anaesthesia’ or `permanent calming’ could be used to control long-term

inmates of mental institutions. A horrendous form of torture by deprivation of

reality could be imagined, with a victim being forced to perceive only what the

torturers choose as reality. Users who experienced VR at work as a tool may

chose to use it as a recreational drug, much as television is sometimes used

today, and just as foreseen in the `feelies’ of Aldous Huxley’s Brave New World.

Conclusions

Computers are now an accepted part of many peoples’ working lives and yet still

retain an aura of mystery for many who use them. Perhaps the commonest

misapprehension is to perceive them as an inflexible tool; once a machine is

viewed as a word processor, it can be awkward to have to redefine it in our

minds as a database, full of information ordered in a different fashion. Some

of what people find difficult to use about today’s machines will hopefully be

alleviated by the introduction of Virtual Reality interfaces. These should allow

us to deal with computers in a more intuitive manner.

If there ever comes a time when it is necessary to construct a list of tests to

distinguish VR from reality, some of the following observations might be of use.

The most difficult sense to deceive over a long period of time will probably be

that of vision. The part of the human brain that deals with vision processing

uses depth of focus as one of its mechanisms to interpret distances. Flat

screens cannot provide this without a massive amount of processing to

deliberately bring the object that the eyes are focussed upon into a sharper

relief than its surroundings. Since this is unlikely to be economical in the

near future, the uniform appearance of VR will remain an indication of its

falsehood.

Another sign may be the lack of tactile feedback all over the body. Whilst most

tactile information, such as the sensation of wearing a watch on one’s wrist, is

ignored by the brain, a conscious effort of detection will usually reveal its

presence. Even the most sophisticated feedback mechanisms will be hard-pressed

to duplicate such sensations or the exact sensations of an egg being crushed or

walking barefoot on pebbles, for example.

The sense of smell may prove to be yet another tell-tale sign of reality. The

human sense of smell is so subtle (compared to our present ability to recreate

odours) and is interpreted constantly, though we are often unaware of it, that

to mimic the myriad smells of life may be too complex to ever achieve

convincingly.

The computer industry will continue to depend upon employees who satisfy some

part of their escapist needs by programming for pleasure. In the near future,

the need for increased efficiency and better estimates of the duration of

projects may demand that those who spend their hours escaping are organised by

those who do not. This would lead to yet another form of stratification within a

society, namely, the dreamers (who are in fact now the direct labour force) and

their `minders’. It should also encourage societies to value the power of

abstract thought more highly, since direct reward will be seen to come from it.

Virtual Reality is yet another significant shift in the way that we can

understand both what is around us and what exists only in our minds. A

considerable risk associated with VR is that our flexibility as human beings

means that we may adapt our thoughts to our tool, instead of the other way round.

Though computers and our interaction with them by VR is highly flexible, this

flexibility is as nothing compared to the potential human range of actions.

Acknowledgements: My thanks go to Glenford Mapp of Cambridge University

Computer Laboratory and Olivetti Research Laboratory, Dr. Alan Macfarlane of

the Department of Social Anthropology, Cambridge University, Dr. John Doar and

Alan Finch for many useful discussions. Their comments have been fertile

starting grounds for many of the above ideas.

This essay contains approximately 4,500 words, excluding Abstract, Glossary and

Bibliography.

Glossary

Chip – for microchip, the small black tile-like objects that make

electronic machines. Computer – machine with a microprocessor and an

interface that

permits by the user. Database – collection of information stored on a

computer which permits.

to the information in several ways, rather like having multiple

in a book. Email – mail. Text typed into one machine can be transferred

to another remote machine. Microprocessor – stand-alone computer, with

little option for change by the user. Program – series of instructions to

control the operation of a microprocessor. Risk – often unforeseen dangers of

applying computer-related technology new applications. Stand-alone – to the

rest of the electronic world. User – human who uses the machine or computer.

VDU – Display Unit. The television-like screen attached to a computer. Virtual

- to mean `imaginary’ or `existing only inside a computer’ VR – Reality.

Loosely, an interface to any computer that

the user to use the computer in a more `involved’ fashion. Word processor

application of a computer to editing and printing text.

Bibliography

L. Mumford, Technics and Civilisation, Harcourt Brace Jovanovich,

New York, 1963, pp.13–15.

Babbage J.M. Dubbey, The Mathematical Work of Charles Babbage,

Cambridge University Press, 1978.

EarlyIBM

William Aspray, Computing Before Computers, Iowa State University

press, 1990.

Turing B.E. Carpenter and R.W. Doras (Editors), A.M. Turing’s

ACE report of 1946 and other papers, The MIT Press, 1980.

Bletchley

David Kahn, The Codebreakers, London, Sphere, 1978

JapanSord

Takeo Miyauchi, The Flame from Japan, SORD Computer Systems Inc., 1982.

Graphs

J.L. Hennessy and D.A. Patterson, Computer Architecture : A

Quantitative Approach, Morgan Kaufmann, California, 1990.

phones

Amos E. Joel, Electronic Switching : Digital Central Office Systems

of the World, Wiley, 1982.

comp.risks

comp.risks , a moderated bulletin board available world-wide on computer

networks. Its purpose is the discussion of computer-related risks.