Смекни!
smekni.com

Происхождение жизни на земле

Лицей № 35

РЕФЕРАТ

по теме: «Происхождение жизни на земле»

Ученика 10 «Ю» класса

Юкельсона Дмитрия

Калининград,

2000 г.

Существуют две главные гипотезы, по-разному объясняющие появление жизни на Земле. Согласно гипотезе панспермии, жизнь занесена из космоса либо в виде спор микроорганизмов, либо путем намеренного «заселения» планеты разумными пришельцами из других миров.

Прямых свидетельств в пользу космического происхождения жизни нет. Космос, однако, наряду с вулканами мог быть источником низкомолекулярных органических соединении, раствор кото­рых послужил средой для развития жизни.

Современной наукой возраст Земли оценивается в 4,5 - 4,6 млрд. лет. Появление на планете первых водоемов, с которыми связывают зарождение жизни, отстоит от настоящего времени на 3,8 - 4 млрд. лет. Около 3,8 млрд. лет назад жизнь стала определяющим фактором планетарного круговорота углерода. В породах вблизи местечка Фиг-Три (Южная Африка), имеющих возраст более 3,5 млрд. лет, обнаружены бесспорные следы жизнедеятельности микроорганиз­мов.

Таким образом, процесс образования примитивных живых су­ществ шел относительно быстро. Ускорению процесса могло спо­собствовать то, что простейшие органические вещества были из нескольких источников: абиогенно образующиеся в первичной атмосфере и в то же время поступающие с оседающей на поверх­ность планеты космической и вулканической пылью. Подсчитано. что Земля, проходя через пылевое облако в течение 1 млрд. лет, могла получить с космической пылью 10 млрд. т органического материала. Это всего в 300 раз меньше суммарной биомассы совре­менных наземных организмов (3 * 1012т). Вулкан заодно извержение выбрасывает до 1000 т органических веществ.

Согласно второй гипотезе, жизнь возникла на Земле, когда сложилась благоприятная совокупность физических и химических условий, сделавших возможным абиогенное образование органиче­ских веществ из неорганических.

В середине прошлого столетия Л. Пастер окончательно доказал невозможность самозарождения жизни в теперешних условиях. В 20-х годах текущего столетия биохимики А.И. Опарин и Дж. Хол-дейн предположили, что в условиях, имевших место на планете несколько миллиардов лет назад, образование живого вещества было возможно. К таким условиям они относили наличие атмосферы восстановительного типа, воды, источников энергии (в виде ульт­рафиолетового (УФ) и космического излучения, теплоты остываю­щей земной коры, вулканической деятельности, атмосферных элек­трических явлений, радиоактивного распада), приемлемой темпе­ратуры, а также отсутствие других живых существ.

Главные этапы на пути возникновения и развития жизни, по-видимому, состоят в: 1) образовании атмосферы из газов, кото­рые могли бы служить «сырьем» для синтеза органических вешеств (метана, оксида и диоксида углерода, аммиака, сероводорода, циа­нистых соединений), и паров воды; 2) абиогенном (т. е. происхо­дящем без участияорганнзмов) образовании простых органических веществ, в том числе мономеров биологических полимеров — ами­нокислот, Сахаров, азотистых оснований, АТФ и других мононук-леотидов; 3) полимеризации мономеров в биологические полимеры. прежде всего белки (полипептиды) и нуклеиновые кислоты (поли-нуклеотиды); 4) образовании предбиологических форм сложного

химического состава —протобионтов, имеющих некоторые свой­ства живых существ; 5) возникновении простейших живых форм, имеющих всю совокупность главных свойств жизни,—примитив­ных клеток; 6) биологической эволюции возникших живых существ.

Возможность абиогенного образования органических веществ, включая мономеры биологических полимеров, в условиях, бывших на Земле около 4 млрд. лет назад, доказана опытами химиков. В лабораторных условиях при пропускании электрических разрядов через различные газовые смеси, напоминающие примитивную ат­мосферу планеты, а также при использовании других источников энергии ученые получали среди продуктов реакций аминокислоты (аланин, глицин, аспарагиновую кислоту), янтарную, уксусную, молочную кислоты, мочевину, азотистые основания (аденин, гуа­нин), АДФ и АТФ. Низкомолекулярные органические соединения накапливались в водах первичного океана в виде первичного бульона или же адсорбировались на поверхности глинистых отложений. Последнее повышало концентрацию этих вешеств, создавая тем самым лучшие условия для полимеризации.

Возможность полимеризации низкомолекулярных соединений с об­разованием полипептидов и полинуклеотидов (определяющая следу­ющий этап на пути возникновения жизни) непосредственно в первичном бульоне вызывает сомнения по термодинамическим соображениям. Водная среда благоприятствует реакции деполиме­ризации. Ученые предполагают, что образование полипептидов и полинуклеотидов могло происходить в пленке из низкомолекуляр­ных органических соединений в безводной среде, например на склонах вулканических конусов, покрытых остывающей лавой. Это предположение находит подтверждение в опытах. Выдерживание в течение определенного времени при 130°С сухой смеси аминокислот в сосудах из кусков лавы приводило к образованию полипептидов.

Образующиеся описанным образом биополимеры смывались ливневыми потоками в первичный бульон, что защищало их от разрушающего действия УФ-излучения, которое в то время из-за отсутствия в атмосфере планеты озонового слоя было очень жест­ким.

По мере повышения концентрации полипептидов, полинукле­отидов и других органических соединений в первичном бульоне сложились условия для следующего этапа—самопроизвольного возникновения предбиологических форм сложного химического состава, или протобионтов. Предположительно они могли быть представлены коацерватами (А. И. Опарин) или микросферами (С. Фоке). Это коллоидные капли с уплотненным поверхностным слоем, имитирующим мембрану, содержимое которых составляли один или несколько видов биополимеров. Возможность образова­ния в коллоидных растворах структур типа коацерватов или мик­росфер доказана опытным путем.

При определенных условиях коацерваты проявляют некоторые общие свойства живых форм. Они способны до известной степени избирательно поглощать вещества из окружающего раствора. Часть продуктов химических реакций, проходящих в коацерватах с уча­стием поглощаемых веществ, выделяется ими обратно в среду. Происходит процесс, напоминающий обмен веществ. Накапливая вещества, коацерваты увеличивают свой объем (рост). По достиже­нии определенных размеров они распадаются на части, сохраняя при этом некоторые черты исходной химической организации (размножение). Поскольку устойчивость коацерватов различного химического состава различна, среди них происходит отбор.

Перечисленные выше свойства ученые усматривают у протоби-онтов. Протобионты представляются как обособленные от окружа­ющей среды, открытые макромолекулярные системы, возникавшие в первичном бульоне и способные к примитивным формам роста, размножения, обмена веществ и предбиологическому химическому отбору.

Предбиологическая эволюция протобионтов осуществлялась в трех главных направлениях. Важное значение имело совершенство­вание каталитической (ферментной) функции белков. Один из путей, дающих требуемый результат, заключается, по-видимому, в образовании комплексов металлов с органическими молекулами. Так, включение железа в порфириновое кольцо гемоглобина уве­личивает его каталитическую активность в сравнении с активностью самого железа в растворе в 1000 раз. Развивалось такое свойство биологического катализа, как специфичность. Во-вторых, исключи­тельная роль в эволюции протобионтов принадлежит приобретению полинуклеотидами способности к самовоспроизведению, что сделало возможным передачу информации от поколения к поколению, т. е. сохранение ее во времени. В основе этой способности лежит матричный синтез. Механизм матричного синтеза был использован также для переноса информации с полинуклеотидов на полипепти-ды. Третье главное направление эволюции протобионтов состояло в возникновении мембран. Отграничение от окружающей среды мем­браной с избирательной проницаемостью превращает протобионт в устойчивый набор макромолекул, стабилизирует важные парамет­ры обмена веществ на основе специфического катализа.

Разделение функций хранения и пространственно-временной передачи информации, с одной стороны (нуклеиновые кислоты), и использование ее для организации специфических структуры и обмена веществ — с другой (белки); появление молекулярного ме­ханизма матричного синтеза биополимеров; освоение эффективных систем энергообеспечения жизнедеятельности (АТФ); образование типичной биологической мембраны — все это привело к возник­новению живых существ, которые поначалу были представлены примитивными клетками.

С момента появления клеток предбиологический химический отбор уступил место биологическому отбору. Дальнейшее развитие жизни шло согласно законам биологической эволюции. Переломным моментом на этом пути было возникновение клеток эукариотического типа, многоклеточных организмов, человека.