Смекни!
smekni.com

Свечение сопровождающее биологические реакции (стр. 2 из 3)

В присутствии определенных соединений, обычно называемых в отечественной литературе "активаторами", свечение клеток и тканей может быть усилено на несколько порядков величины. Наибольшее распространение получило измерение хемилюминесценции, связанной с выделением клетками активных форм кислорода (к которым относятся супероксид, гидроксильный радикал, перекись водорода и гипохлорит): хемилюминесценция наблюдается в присутствии активаторов люминола и люцигенина. Активированная хемилюминесценция довольно широко применяется в клиническом биохимическом анализе.

Активированная хемилюминесценция

Собственная хемилюминесценция, сопровождающая биохимические реакции в клетках и тканях, обладает, как правило, очень низкой интенсивностью и не случайно получила название "сверхслабого свечения" . Это оказалось главным и пока не преодоленным препятствием на пути к широкому использованию собственной хемилюминесценции в аналитических целях.

Значительное распространение получило однако измерение хемилюминесценции в присутствии определенных соединений, получивших в отечественной литературе общее название "активаторов", а за рубежом - "усилителей" (enhancer) хемилюминесценции. По механизму действия активаторы распадаются на две четко различающиеся группы, которые можно соответственно назвать химическими и физическими активаторами .

Химические активаторы ХЛ - это соединения, вступающие в реакции с активными формами кислорода или органическими свободными радикалами, в ходе которых образуются молекулы продуктов в возбужденном электронном состоянии.

Наблюдаемое при этом hemilum связано с переходом молекул в основное состояние., что приводит к высвечиванию фотонов:

Активатор + радикалы ® продукт* ® продукт + фотон

Хорошо известными представителями таких активаторов могут служить люминол (3-аминофталевый гидразид, см. Рис. 4) и люцигенин [Бис(N-метилакридиний)] Физические активаторы не вступают в химические реакции и не влияют на ход реакций, сопровождающихся hemilumм, но тем не менее многократно усиливают интенсивность хемилюминесценции. В основе их действия лежит физический процесс процесса переноса (миграции) энергии с молекулы продукта хемилюминесцентной реакции на активатор:

Радикалы ® продукт* ® продукт + фотон 1 (неактивированная ХЛ)

Продукт* + активатор ® продукт + активатор* ® фотон 2 (активированная ХЛ)

Хемилюминесцентный иммунный анализ

По идеологии хемилюминесцентный иммунный анализ не отличается от радиоиммунного, с той только разницей, что вместо радиоактивно-меченных субстратов или антител используются субстраты и антитела,"меченные" соединением, которое вступает в реакции, сопровождающиеся хемилюминесценцией, в присутствии перекиси водорода и катализатора (обычно это фермент пероксидаза).

Хемилюминесцентной меткой (ХЛ-меткой) чаще всего служат низкомолекулярные соединения, по химической структуре близкие люминолу и люцигенину, такие как изолюминол, сукцинилированный люминол, эфиры акридиния и другие. Присоединение хемилюминесцентной метки производится либо к антигену, т. е. низкомолекулярному соединению либо к антителу на этот антиген. В первом случае метод называется CIA (Chemiluminescent Immuno Assay), во втором - ICMA (ImmunoChemiluminoMetric Assay). По русски это соответствовало бы ХИА (Хемилюминесцентный Иммунный Анализ) и ИХМА (Иммуно-ХемилюминоМетрический Анализ).

Оба метода направлены на определение биологически-важных низкомолекулярных соединений (например, гормонов) в тех концентрациях (как правило, очень низких), в которых они встречаются в биологических объектах.

При использовании метода CIA к раствору, содержащему интересующее нас анализируемое соединение (обозначим его как A) добавляют определенное количество того-же, но ХЛ-меченного соединения (обозначим его как A*) и антитела (анти-A). Образуется смесь меченных и немеченных иммунных комплексов (A-анти-A и A*-анти-A, соответственно):

A + A* + анти-A ® A-анти-A + A*-анти-A.

Очень важно, что пропорция между меченным и немеченым иммунными комплексами зависит от того, сколько меченного антигена мы добавили (A*) и сколько немеченого было в исследуемой пробе (A), а именно: чем больше было немеченого антигена, тем меньше доля меченных антител.

Теперь остается очистить смесь иммунных комплексов и определить количество A*-анти-A по хемилюминесценции. Интенсивность ХЛ будет тем меньше, чем больше было немеченых антигена A (т. е. анализируемого вещества) в исследуемой пробе. Чтобы анализ был количественным, предварительно строят калибровочную кривую, т. е. измеряют зависимость интенсивности ХЛ в конечной пробе от концентрации стандартного раствора изучаемого вещества A. Затем измеряют интенсивность ХЛ в растворе с неизвестной концентрацией антигена (A), повторяя те же процедуры, и по калибровочной кривой находят концентрацию A.

При использовании метода ICMA берут избыток ХЛ-меченного антитела (анти-A*) и добавляют к нему раствор с изучаемым веществом (A). Образуется ХЛ-меченный иммунный комплекс:

A + анти-A* ® A-анти-A*

Остается отделить иммунные комплексы от других участников реакции и измерить интенсивность ХЛ. В данном случае она будет тем выше, чем больше было анализируемого вещества A в пробе. Для количественного анализа и здесь предварительно строят калибровочную кривую.

В обоих методах одна из практических трудностей - это очистка иммунных комплексов. Она решается также методами иммунохимии. Детали этой техники мы здесь рассматривать не будем, но один из подходов заключается, например, в использовании порошка сорбента (см. Рис. 6 В), к поверхности которого "пришиты" (т. е. присоединены ковалентной химической связью) антитела к анти-А (назовем их анти-анти-А). В присутствии растворенных комплексов (А-анти-А и/или А*-анти-А) образуется тройной комплекс ("сандвич"): (анти-анти-А)-(анти-А)-А и/или (анти-анти-А)-(анти-А)-А*. Адсорбент можно осадить и затем определить в осадке (после дополнительных обработок) количество меченного антигена.

Биолюминесценция

Биолюминесценция - (БЛ) - это hemilum живых организмов, видимое простым глазом. Способностью к БЛ обладают организмы, принадлежащие к самым разным систематическим группам: бактериям, грибам, моллюскам, насекомым. Механизм реакций, сопровождающихся hemilumм, весьма различен у разных видов; однако обычно включает в себя химическое превращение определенного низкомолекулярного субстрата, называемого люциферином, катализируемое ферментом, называемым люциферазой.

С развитием техники измерения очень слабых световых потоков стало ясно, что свечение при химических реакциях (хемилюминесценция) - не такая уж экзотика. Слабое свечение сопровождает по существу все химические реакции, идущие с участием свободных радикалов. Собственное свечение животных клеток и тканей обусловлено преимущественно реакциями цепного окисления липидов и реакциями, сопровождающими взаимодействие окиси азота и супероксидного радикала.

Известное с древних времен видимое простым глазом свечение некоторых организмов, например светляка, которое называют биолюминесценцией, также нашло широкое применение в клинических анализах и медико-биологических научных исследованиях.

Биолюминесценция светляка

Всем известное hemilum светлячков происходит в результате биохимической реакции окисления светлячкового люциферина кислородом воздуха в присутствии аденозинтрифосфорной кислоты (ATP):

E + LH2 + ATP ® E-LH2-AMP + PP
E-LH2-AMP P*-E-AMP
® E + P + AMP + фотон

Здесь AMP - аденозинмонофосфат, PP - пирофосфат, E - люцифераза, LH2 - люциферин, P* и P - продукт реакции (оксилюциферин) в возбужденном и основном состояниях, соответственно.

В отсутствие АТФ биолюминесценция не наблюдается; на этом основан один из самых чувствительных методов анализа АТФ в различных объектах. Для определения содержания АТФ смотрят хемилюминесценцию в изучаемом растворе, к которому добавляют смесь люциферина и люциферазы, выделенных из светлячков либо полученных синтетически и методом генной инженерии.

Удается определять содержание АТФ в образце от 10-17 моля и выше.

Поскольку биосинтез АТФ — показатель нормальной жизнедеятельности клеток, препарат люциферин — люцифераза светляка используют для обнаружения бактериального заражения в какой-либо среде, оценки жизнеспособности эритроцитов при консервировании крови, изучения действия на микроорганизмы антибиотиков и т В последнее время используют препараты иммобилизованной люциферазы (т. е. фермента, молекулы которого химически связаны с полимерной пленкой), стабильность которой выше; такой препарат можно использовать многократно.

Биолюминесценция светящихся бактерий

К числу светящихся относится немного видов бактерий. Хемилюминесцентная реакция, непосредственно сопровождаемая hemilumм, катализируется ферментом — бактериальной люциферазой и включает в себя процессы окисления восстановленного флавинмононуклеотида ФМН-Н2 до ФМН и одновременно - алифатического (С14) альдегида до миристиновой (С14) кислоты В последние годы получают все большее распространение биохимические анализы, в которых в качестве тест-объекта используют целые бактериальные клетки (в суспензии), экстракты светящихся бактерий, изолированный фермент - люциферазу.