Смекни!
smekni.com

Реакторный графит: разработка, производство и свойства (стр. 2 из 4)

Полученному графиту ГР-1 были присущи высокая прочность и повышенный ТКЛР. По свойствам он превосходил графиты, отработавшие свой ресурс в кладках национальных реакторов ВТГР — американский FSV (Н-327) и немецкий AYR (ATR-2E). По прочности при сжатии и изгибе, модулю упругости и ТКЛР графит ГР-1 лучше американского графита Н-451, разработанного для призматических блоков кладки более мощного высокотемпературного реактора HTGR. Из-за технологических особенностей производства полуфабриката МПГ графит ГР-1 имеет недостаточную теплопроводность, ее можно повысить дополнительными пекопропитками, что однако удорожает процесс производства.

Графит марки СПП-МПГ-Р для топливных элементов высокотемпературных реакторов (шаровые ТВЭЛы и компакты) можно получить из мелкозернистого наполнителя — порошка графита МПГ. Связующим здесь является плохо графитирующаяся фенол-формальдегидная смола. К тому же окончательная температура обработки не превышает 2000 °С. Поэтому такой двухфазный материал имеет неграфитированный компонент и невысокую теплопроводность [12].

Нефтяной полукокс в качестве связующего используется в композиционном графит-графитовом материале ЕР, в котором летучие вещества в полукоксе связывают рафинированный природный графит-наполнитель. При графитации из полукокса образуется прочный графитовый каркас, а природный графит обусловливает пластичность материала и его высокую теплопроводность в радиальном направлении.

По ряду причин после закрытия производства спецкокса на нефтеперерабатывающих заводах в Горьком и Москве, а позже — в 1994 г. и на НПЗ в Волгограде [13], производство атомных графитов, базировавшееся исключительно на коксе КНПС, было остановлено, и заводы оказались не готовы к его восстановлению из-за отсутствия разработок по коксу-дублеру.

Расширение сырьевой базы для получения реакторного графита

Специалистами Углеродпрома и Челябинского электродного завода был выполнен большой объем исследований свойств коксов отечественных производителей. Наиболее пригодным по своей микроструктуре оказался пековый кокс коксохимических производств [14, 15]. Однако по своим свойствам он существенно отличается от кокса КНПС, что потребовало, соответственно, изменить параметры технологического процесса [16]. Результатом отработки технологии на новом сырье стало полное восстановление производства графитов ВПГ и изделий из них (сменных элементов — колец и втулок для различных типов реакторов) на мощностях Челябинского электродного завода, что обеспечило бесперебойную и безаварийную эксплуатацию реакторов, их своевременный ремонт и замену ТВЭЛов.

НИИграфит вместе со специализированными институтами после большого объема исследований графита ВПГ на основе прокаленного пекового кокса, а также испытаний изделий из этого графита, были выданы положительные заключения о применимости полученных материалов в существующих конструкциях реакторов без уменьшения ресурса эксплуатации изделий и агрегатов в целом.

На одном из предприятий была проведена попытка получить графит для КТК (условно графит ГР-76-КС) на основе сланцевого (смоляного) прокаленного кокса с микроструктурой Бср = 3,9—4,3 балла. Однако известно, что кокс с такой микроструктурой, хотя и дает хорошие значения теплопроводности, имеет пониженные прочность и плотность, а полученные графиты отличаются повышенной анизотропией свойств, что и подтвердилось на опытных партиях.

Дальнейшее совершенствование водо-графитовых атомных реакторов пойдет, как можно ожидать, по пути повышения их единичной мощности, увеличения гарантированного срока службы с одновременным повышением надежности при эксплуатации. Для этих целей Углеродпром и ЧЭЗ отрабатывают технологии получения нескольких марок графитов с высокими эксплуатационными характеристиками [17, 18].

В качестве сырья используется композиционный наполнитель из непрокаленных коксов, различных по природе и микроструктуре. Указанное, в сочетании с выбранным способом прессования, позволяет получать графиты с широким диапазоном свойств, необходимые для новых конструкций реакторов различных размеров. В целях устойчивости производства графитов разработана и внедрена в производство на ЧЭЗе технология получения пекового кокса с более низкой температурой окончания процесса коксования по сравнению с таковой на коксохимических предприятиях [19].

Свойства новых марок графитов, полученных в промышленных условиях ЧЭЗа, представлены в табл. 2.

Таблица 2 Свойства новых марок графитов на основе композиционных наполнителей, полученных на Челябинском электродном заводе

Марка графита на основе Свойства графитов
композиционного наполнителя dk, г/см3 о, МПа Е, ГПа X, р, мкОм • м ТКЛР, КГ6 к-1
изгиб сжатие Вт/(м -К)
ЧКГ-3 (0275x260 мм) 1,82 30, 2 52 ,9 10,0 116 10 ,3 4,2
ЧКГ-4 (0205x260 мм) 1,83 26, 4 58 ,6 11,3 137 9, 4
ГРЧ (0125x1200 мм) 1,89 30, 5 83 ,1 12,4 122 9, 0 5,0
ГРЧ (430x570x1300 мм) 1,79 19, 2 47 ,3 8,6 152 8, 0 4,4
ГРЧ-Г (0260x230 мм) 1,89 23, 7 65 ,1 11,0 164 8, 0 4,2

Таким образом, выполненные исследования позволили разработать технологию получения новых марок высокоплотных графитов с широким диапазоном свойств; значительно расширить габариты заготовок и изделий из них; внедрить в производство различное по своей природе сырье от нескольких поставщиков и разработать технологии получения новых видов сырья. Все это делает производство новых КУМ гибким и устойчивым и позволяет рассматривать сами материалы как перспективные для применения в атомных реакторах новых конструкций повышенной мощности (например, МКЭР-1500) с длительным сроком гарантированной эксплуатации.

Изменение свойств графита в условиях радиации

В результате многолетних радиационных испытаний углеродных материалов в исследовательских и промышленных реакторах и изучения свойств кернов, систематически выбуриваемых из кладок действующих реакторов, установлены закономерности поведения графита при облучении и зависимость наблюдаемых изменений от технических характеристик графита, в том числе от его структуры и свойств. Из последних важнейшим является радиационное изменение размеров или формоизменение (рис. la), поскольку определяет как конструктивную стабильность кладки, так и радиационное изменение макросвойств самого графита.

При низкотемпературном облучении (< 300 °С) усадка отсутствует, а первичное распухание V] стабилизируется на определяемом температурой уровне (А///),. При высоких дозах оно переходит во вторичное распухание со скоростью Vl (рис. la, кривая 7). Облучение при средних температурах (350—800 °С), соответствующих рабочим, вызывает усадку, идущую в водографитовых реакторах в течение 20—25 лет с постоянной скоростью v2. Усадка при Fm сменяется вторичным распуханием со скоростью V2 (кривая 2 на рис. 1). При высокотемпературном облучении (>900 °С) начальная усадка невелика или отсутствует и переходит во вторичное распухание со скоростью V$ (кривая 3).