Смекни!
smekni.com

Formula 1 Essay Research Paper CONTENTSPageIntroductionFormula 1 (стр. 2 из 2)

displacement of 3 liters produces about 140 horsepower. A Formula 1 car is able to

produce so much more power because it uses many new technologies.

These engines have four valves per cylinder, two valves are for the intake and two

valves for the exhaust. The four valves allow more efficient flow of fuel and exhaust gases.

The camshafts are gear driven instead of belt driven to eliminate slippage.

The computerized fuel injection system allows the fuel to enter the combustion

chamber efficiently to produce the most power. The fuel injection system is controlled by

the Engine Control Unit or ECU. This computer controls all the vital functions of the

engine. The ECU will adjust the engine to ever changing conditions in atmospheric

pressure and humidity.

The camshaft opens and closes valves using a new system called air timing. Air

timing uses compressed air to open and close the valves; this eliminates the need for valve

springs which can break. In order to keep the engine running cool, a Formula 1 engine

uses dry-sump lubrication. This system pumps the oil under pressure all over the engine

and transmission. Formula 1 teams also wind-tunnel test their combustion chambers to

identify the best design for maximum efficiency. (Renault Racing, 1997)

Materials Used In the Construction of the Engine

(Renault Racing, 1997)

Aluminum- Cylinder heads, sump pump, pistons

Magnesium-Oil pump housing

Carbon Fiber- Air box, coil shield

Steel- Camshafts, crankshaft, timing gears

Titanium- Connecting rods, fasteners

(Renault Racing, 1997)

Transmission Specifications and Technology

The transmission on a Formula 1 car is very complex. The transmission or gear

box is semi-automatic, which means the driver does not have to push in the clutch for

shifting gears. The only time the driver has to use a clutch is to start the car from a stop.

The clutch is located on the left side of the steering wheel and is operated by fingers on

the left hand. On the right side, there is the paddle which is used to switch gears using the

fingers of the right hand. The driver will pull the paddle towards him to switch up a gear

and move it away to downshift. The engine will automatically disengage the clutch when

the gears are being changed. This type of shifting is called sequential and is similar to a

motorcycle. This means that you have to switch through all the gears when downshifting.

All Formula 1 cars must also have one reverse gear.

The race teams try to find the right gearing to suit each track. The racing teams

must find the right match between top speed and acceleration. They do this by changing

gear ratios. An example for these ratios is 3:14:1. This means that the wheels will turn

once when the driver shaft rotates 3.14 times. A 4:10:1 ratio would mean it would have

better acceleration than 3:14:1, but a lower top speed at the same engine speed.

(Renault Racing, 1997)

Cockpit Instruments

Buttons

The cockpit of a Formula 1 car is very complex with many switches and buttons.

There are four buttons on the steering wheel of a Formula 1 car. The first button is the

engine kill switch which turns off the engine; the second is the neutral button that puts the

car in neutral from any gear; the third button is the pit lane speed limiter. The fourth

button is used for the radio. The driver pushes this button when he wants to talk to his

crew. (Young, J 1995)

Switches and Adjustments

On the dash of a Formula 1 car there are many switches. The switch marked “Fire”

is used to activate the onboard fire extinguishers in case of a fire. Another switch is the oil

pump switch. The driver would use this switch if there was an oil pump failure and this

would activate the backup system. On the right side of the dash there is the brake balance

adjustment. The driver would adjust this to give more braking power to the rear or front

wheels. The switch marked “Light” on the dash is used to turn on the rear safety light on

the car. This would be used when the visibility is bad or it is raining. On the floor of the

cockpit are three dials. The throttle sensitivity adjuster allows the driver to control the

sensitivity of the throttle pedal. The second dial, the transmission strategy adjuster, allows

the driver to adjust the revolutions per minute for the engine and the shift points. The third

dial, the air/fuel mixture, adjusts the mixture of fuel and air entering the engine. (Young, J.

1995)

Displays

The cockpit of a Formula 1 car has many displays; the largest is the liquid-crystal

display. This display shows the current gear the car is in, last complete lap time and the

current lap time. On the left side of the dash is the RPM indicator for the engine’s speed.

The right side of the dash contains warning lights for the high temperature, low oil

pressure and fuel pump. (Young, J 1995)

Controls

As in a commercial passenger vehicle, a Formula 1 car has a steering wheel and

foot pedals. The stressing wheel is flat on the top so the driver can see over it. As

described earlier, the clutch is located behind the wheel on the left side. The driver would

only use the clutch to start the car from a stop. The two pedals are the accelerator and

brake pedals which are located on the floor and operated by the drivers feet. The

accelerator is used to make the car go faster and the brake pedal is used to slow the car.

(Young, J 1995)

Comparison Specifications

Between a Formula 1 car and a 1995 Dodge Caravan

(Ferrari Racing, 1997; Dodge, 1995)

Conclusion

Formula 1 racing is one of the most technical and computerized sports in the

world. Formula 1 racing is constantly changing and improving in the areas of chassis

construction, brakes, tires, aerodynamics, safety, engine reliability and power. Formula 1

racing is in the forefront of development of safety features and technology found on a

commercial passenger vehicle.

Formula 1 racing cars are the safest cars in the world. They can crash at 300 km/h

and the driver can still walk away. Over time, these cars have become faster and safer.

This is due to extensive research done by each race team. All the parts of the car go

through many tests and modification to find the best possible design. Formula 1 also uses

many computers to control many functions on the car. In the past few years, normal

passenger vehicles are using the computer to operate the engine and electronics in the

vehicle. This allows the engines to run more efficiently, and this in turn is better for the

environment. Formula 1 racing will continue to be the most technical and entertaining

sport in the world.

References

Automobile racing. (1994). In Microsoft Encarta multimedia encyclopedia [CD-

ROM]. Redmond: Microsoft. [1994, Nov.5]

Boddy, W. & Labab B. (1988). The history of motor racing. Hong Kong:

Witsmith.

Chimits, X. (1994). Renault formula 1. New York: DK Publishing Book.

Ford Racing. (1997, November 2). Ford Motorsport [Online]. Available:

http://www.ford.com/motorsport/2-10techtr.html [1997, November 15].

Graham, I. (1989). Racing cars. New York: Gloucester Press.

Grant, H. D. (1997, November 25). [Personal interview]. Winnipeg.

Lerner, P. (1995, September). The state of racing. Automobile, pp. 66-70.

Mansell, N. (1993). Nigel Mansell’s Indy car racing. London: Weidenfeld and

Nicolson.

Renault Racing. (1997, November). Renault/Williams/Bennton [Online]. Available:

http://www.renaultf1.com [1997, November 15].

Schtegelmilch, R. (1993). Grand Prix fascination formula 1. Germany:

Konemann.

Sullivan, G. (1992). Racing Indy cars. New York: Cobblehill Books.

Team Ferrari. (1997, October). Team Ferrari racing [Online]. Available:

http://www.ferrari.it/comsport.e/formula1.html [1997, November 15].

Wilkinson, S. (1996). Automobile racing. In World book encyclopedia (Vol. 1,

pp. 977-980). Chicago: World Book.

Young, J. (1995). Indy Cars. Minneapolis: Capstone Press.

APPENDIX A

Technical Specifications:

Rothmans Williams Renault FW19 Formula 1 Racing Car

Engine: Renault V10, RS9, 3 liter normally-aspirated??????????

Management System: Magneti Marelli

Transmission: Six-speed Williams transverse semi-automatic

Chassis: Carbon Aramid epoxy composite, manufactured by Williams

Suspension: Williams. Torsion bar front, Helical coil rear with Williams-Penske dampers

Cooling System: Two Secan water radiators, two IMI oil radiators

Brakes: Carbone Industrie discs and pads operated by AP calipers

Lubricants: Castrol

Fuel: Elf

Wheels: Oz; 13 x 11.5 front, 13 x 13.7 rear

Tires: Goodyear Eagle radials

Spark Plugs: Champion

Cockpit Instrumentation: Williams digital data display

Seat Belts: Five point Williams

Steering Wheel: Personal

Driver’s seat: Anatomically formed in carbon/epoxy composite material

Extinguisher Systems: Williams, with Metron actuators and FW 100 extingishants

Paint System: DuPont

Front Track: 1670 millimetres

Rear Track: 1600 millimetres

Wheelbase: 2890 millimetres

Weight: 605kg

Overall car length: 4150 millimetres

Figure A-1: Rothmans Williams Renault FW19 Formula 1 Car

(Williams Racing, 1997)

APPENDIX B

Technical specifications

Renault V10 RS9 Engine

Engine Type: piston driven, normally-aspirated

Horsepower: 700

Number of cylinders: 10 cylinders V-shape (71 degree angle)

Displacement: 3 liters 2998.1 cc

Cam Shafts: 4 gear driven

Fuel Injection: Magneti Marelli digital injection

Timing: Air Timing

Number of Valves: 40

Electronic ignition: Magneti Marelli solid state

Engine Length: 623mm

Engine Height: 542 mm

Engine Weight: 121 Kg

Engine Height to Cylinders Heads : 395 mm

RPM Redline: 18,000 rpm

Transmission/Gearbox: Six-speed Williams transverse semi-automatic Limited slip

Figure B-1: Renault V10 RS9 Engine Figure B-2: Wire Outline

(Renault F1, 1997)

319