Смекни!
smekni.com

Zonation On Rocky Shore Essay Research Paper (стр. 2 из 2)

those that modify the behavioural of an organism. Those species that are best

adapted to take advantage of a set of conditions will do far better than those

that are not adapted will. This survival of the fittest leads to wide diversity

of species found on the seashore. The main factor affecting the species found in

the splash zone is that although it lies above the EHWS mark, and is therefore

never covered by the sea, it is regularly covered in salt spray from waves and

the wind. This prevents many terrestrial species from living there, as they

cannot tolerate areas of high salinity. This means that lichens, such as

Xanthoria parientina, that can tolerate such conditions, are the dominant

species. No marine seaweeds can live in this zone as they all require regular

immersion in seawater, and this does not occur above the EHWS mark. However,

small periwinkles may occasionally graze on the lichens found here. The main

factors affecting the upper shore are the highly variable temperature, and the

amount of desiccation that organisms have to endure as a result of their

infrequent immersion in the sea. However, wave action and the light that reaches

seaweeds are not major factors are waves do not cover this area regularly, and

even when it is submerged, it is not submerged deeply, so the light is not

affected. Pelvetia canaliculata is adapted to survive long periods of

desiccation as it is coated in thick mucilage, which reduces water loss. The

thick mucilage layer also helps to regulate the temperature of the seaweed. It

has channelled fronds, which helps reduce the surface area of the fronds that

are exposed to the air. The enzymes and pigments found within it are also

resistant to sudden temperature change, so it is well adapted to live on the

upper shore. However, it is not found further down the shore due to competition

with other seaweeds. Littorina saxatalis can cope with low temperatures far

better than it can with high temperatures, so it has a ridged shell surface to

increase its surface are and therefore the amount of heat that it radiates. This

helps the snail maintain a constant body temperature, so its enzymes are not

denatured. It has a tight fitting operculum, which helps to seal in moisture

within the snail, thus reducing desiccation. All of the main abiotic factors

affect the Middle Shore. Wave action is very strong on the middle shore, so any

creatures that live here must be able to withstand this. Desiccation and

temperature change are also important factors as the middle shore is regularly

exposed to the air. The main seaweed found in the middle shore is Fucus

vesiculosus, which has thick mucilage to conserve water. The enzymes and

pigments within are also able to withstand a certain amount of temperature

shock, though not as much as those found in Pelvetia canaliculata. It is very

firmly attached to the substrate material, and so is able to withstand the wave

action. Grazing by limpets and periwinkles is not a major problem on this shore,

so the seaweed cover is very abundant. It is not found in the upper shore, as it

cannot cope with the extremes of temperature and the lack of water in that zone.

It does not inhabit the lower shore in an attempt to avoid competition with

Fucus serratus. Littorina obtusata can withstand the moderate amounts of

desiccation and temperature change on the middle shore by closing its operculum

to seal in moisture and by resting under seaweeds to insulate it. It does not

have the ridged shell of Littorina saxatalis, so it cannot radiate heat as

efficiently and therefore cannot survive on the upper shore. By remaining on the

middle shore, Littorina obtusata can avoid predators such as dog whelks that

live further down the shore. However, 12 Littorina obtusata were recorded in

12th station, just above the ELWS mark, which is very unusual, as they are

normally out competed by lower shore snails such as Gibbula cineraria in that

region. The conditions on the lower shore are most like those in the sea. The

organisms that inhabit this zone cannot tolerate large amounts of desiccation or

temperature change, so they are not found further up the beach. As they are

submerged for long periods, the amount of light reaching the seaweeds is an

important factor and only those with the appropriate accessory pigments can

survive here. Predation is far more of a problem for the animals that live here.

Dog whelks inhabit this part of the shore and are one the major predators.

Because it is submerged for so long, predation from fish is another danger

animals living here face. Fucus serratus is very efficient at using the

resources that are in short supply, so it out competes other species, such as

Fucus vesiculosus and Pelvetia canaliculata. However, rapid temperature changes

destroy the photosynthetic pigments in its cells, so it is not found further up

the shore. It is brown in colour and so is very well adapted for taking

advantage of all the available wavelengths of light that reach it. Gibbula

cineraria cannot tolerate desiccation or temperature change very well so it does

not inhabit the upper of middle shore. However, it is very good at maximising

the resources around it, so it out competes other species of snails, such as

Littorina saxatalis. It has a thicker shell than many other snails, and so is

more difficult for predators to eat. Limitations The method that was followed

had a number of limitations that lead to anomalous results (such as finding

Littorina obtusata in the twelfth station). The limitations affecting the

results were: ? The misidentification of species. Many of species found looked

very similar, and so misidentification could have affected the results. The

misidentification of species would lead to species being miscounted or being

recorded in stations where they are not normally found. The correct species

would not be recorded, and this again would affect the results. This limitation

affected the periwinkles and topshells more that the other groups, as they are

the most physiologically similar. ? Species or specimens being miscounted or

missed altogether. Due to the thick seaweed cover on the shore, it is possible

that many of the periwinkles and topshells where either miscounted (as

individuals were covered up) or missed altogether. Quadrats containing many

cracks or crevices, or large rocks, which organisms could hide under, also made

it more difficult to be confident that every specimen had been recorded, leading

to inaccurate results. ? Quadrats being placed in the wrong location. It would

have been easy for errors to have been made while cross-staffing new locations

for quadrats, which would lead to species being recorded at the wrong heights

and in the wrong zones. This would make it harder to draw meaningful conclusions

from the results. ? Quadrats placed on uneven ground. The shore that was

surveyed was very rocky, and so quadrats were occasionally placed overhanging

other areas. This lead to larger areas being surveyed, as the slopes were

surveyed as well as the flat ground. The same problem occurred when large rocks

were within the quadrats, as the top, bottom and sides of the rock were

surveyed, again leading to large areas. This could lead to abnormally high

results, as a larger area was surveyed than normal, which would make it harder

to draw conclusions from the results. ? Animals moving around. The majority of

the animal species recorded are mobile, and so could move around while being

counted, leading to inaccurate results, or could have been found far from their

niche, distorting the results. The animals could move into a quadrat, leading to

higher results, or move out of a quadrat, leading to lower results than would be

expected. It is also possible that animals could have been counted twice, which

would increase the results. All of these limitations would affect the accuracy

of the results, making it harder to draw meaningful conclusions. Biological

Significance An organism can only survive in a particular habitat if it is well

adapted to that habitat. If a organism arrives in a habitat to which it is not

adapted, then it will be either killed outright by the conditions there (e.g.

extreme temperature changes in upper shore kill any Fucus serratus spores that

germinate there); or out-competed by other, better adapted species (e.g.

Littorina saxatalis is not found further down the shore because it would be out

competed by other Littorina species). If a species is very well adapted to a

particular habitat, then it can make maximum use of the resources there and

competitively exclude any less well-adapted species. It will therefore become

one of the most abundant species in that habitat. Species become adapted to new

habitats as mutations randomly occur in the population. The majority of these

mutations will have no affect on how well adapted the organism is (e.g. a human

being born with webbed toes), some will make it less well adapted (e.g. a bright

white lion is born and is unable to be camouflaged against its prey and so

starves), and others may make an organism better adapted to its habitat (e.g. a

giraffe is born with a longer neck and so can reach more food). Those organisms

that are better adapted to their environment will be more successful than those

that are less well adapted, and will have more offspring and so pass on their

genes to more individuals. If a disaster occurs, and resources are in very short

supply, those organisms that are better adapted will be more likely to survive

and pass on their genes. Eventually, a new species will be formed, with every

individual being better adapted. When this occurs, the original species may

become extinct (e.g. all the giraffes with short necks), or continue surviving

if the new species is adapted to take advantage of a different habitat (e.g. a

new seaweed evolves that can survive higher up the shore). This process is known

as survival of the fittest, and it increases species diversity as new species

are constantly evolving. This can be seen on a miniature scale on the rocky

shore, where many different species have evolved to take advantage of the many

different ecological niches available. My results show that each species is only

found on a small area of the shore, an area that it ha evolved to be adapted to,

and one where it is the most successful species. This process of evolution is

constantly occurring, producing better and better-adapted species, for many

different ecological niches. It occurs all over the globe in many different

habitats, forming many new species.