Смекни!
smekni.com

Zonation On Rocky Shore Essay Research Paper (стр. 1 из 2)

Zonation On Rocky Shore Essay, Research Paper

The seashore is a

habitat that contains a wide range of microhabitats and ecological niches for

different creatures. This is mainly due to the effects of the tides, that rise

and fall twice each day. Tides are the vertical movement of water in a

periodical oscillation of the sea, due to the gravitational pull of the sun and

moon. The tides are on a semi-diurnal cycle, so there are two high tides and two

low tides each day. Due to the orbit of the moon, the tides also have a monthly

cycle. This creates neap (very low) and spring (very high) tides. The seashore

can be divided into several zones, which are illustrated on the diagram below:

Key: EHWS = Extreme High Water Spring (MHWS = Mean High Water Spring) MHWN =

Mean High Water Neap (MTL = Mid Tide Level) MLWN = Mean Low Water Neap ELWS =

Extreme Low Water Spring (MLWS = Mean Low Water Spring) CD = Chart datum The

Supralittoral Zone: This is the highest zone on the shore, and lies above the

EHWS mark, and therefore is never covered by seawater. However, it may be

occasionally be spray wetted. Because of this, it is mainly inhabited by

terrestrial species, such as lichen, that can live in areas of very high

salinity. The Littoral (Intertidal) Zone: This zone is the area that is covered

and uncovered by the tides, and therefore organisms that live here must be able

to tolerate a large range of conditions. It can be further divided into the

Littoral Fringe and the Eulittoral zone. The Littoral Fringe (Splash Zone): This

part of the Littoral zone lies above the area that is completely submerged by

the sea in normal conditions. However, it is frequently covered by splash from

waves, and so is far more marine in character that the Supralittoral Zone.

Lichens still dominate this zone, but some species of periwinkles and topshells

may graze them. The Eulittoral Zone: This zone is the area of the beach that is

regularly submerged by the tides, and can be divided into three more zones, the

upper, middle and lower shores. It shows the greatest species diversity of any

of the zones. The Upper Shore: This region of the shore lies between the EHWS

and MHWN marks, and so is only immersed during spring tides. Because of this,

organisms that live here must be adapted to survive long periods of desiccation.

The two seaweeds that are the most common here, Fucus spiralis and Pelvetia

canaliculata have adaptations to survive in this area. The Middle Shore: This

region of the shore lies between the MHWN and MLWN marks, and will be submerged

for half of every day, even during neap tides. The most common seaweed in this

zone Fucus vesiculosus. Mussel beds will form and both limpets and periwinkles

will graze the rocks. Sea anemones and crabs are residents of this zone. The

Lower Shore: This region of the shore lies between the MLWN and ELWS marks, and

will be submerged for most of each day, even during neap tides. The most

important seaweed in this area is Fucus serratus, which will form large zones

wherever suitable. It shows the greatest species diversity of any zone on the

seashore. The Sublittoral Zone: This part of the shore lies below the ELWS mark,

and is therefore never uncovered by the sea. There are many types of organism

found on the rocky shore. The two main photosynthetic organisms are the lichens

and the macroalgae or seaweeds. Lichen are the main organisms found in the

splash zone and come in three distinct types; crustose, foliose and fruiticose.

Crustose lichens form a thin crust on the rock surface, and are impossible to

remove without damage. Foliose lichens are leafy lichens that are not as firmly

attached to the rocks. Fruiticose lichens extent vertically from the rock

surface, and can sometimes be confused with mosses and small grasses. The leafy

part of a lichen is known as the thallus. Seaweeds are primarily divided by

colour, into brown, red and green groups. Most marine seaweeds are brown

seaweeds, with fewer red species, and even fewer green species. The three main

parts of a seaweed are: 1. Frond (lamina, thallus, blade) (often broad and flat)

2. Stipe region (often long and cylindrical) 3. Basal attachment (holdfast) The

frond or thallus is the site of most of the photosynthetic activity in the

organism, and also contains the reproductive organs. The stipe region can act

either as a structural support, a storage organ, or as a transport network

within the organism. The role of the holdfast is to anchor the seaweed securely

to the substrate it lives on. The holdfast must be strong enough to resist the

strong pull of the waves and tides on the seaweed. The size and strength of the

holdfast varies between species. The main heterotrophic organisms of the

seashore are the molluscs. The most common molluscs are the gastropods

(periwinkles, limpets and topshells), and the mussels. Periwinkles have coiled

shells and a circular operculum (a small, retractable piece of shell used to

cover the opening of the shell when the snail is inside.). They average about

15mm in length and are the most common group of gastropods on the seashore.

Topshells are very similar to periwinkles, but have an oval operculum, and tend

to be slightly smaller. There are fewer species of topshells than periwinkles on

a rocky shore. Limpets have a conical shell, with no operculum and are much

larger than either periwinkles or topshells. Mussels have two shells, and are

fixed to a single location in adult life. They can form large groups on the

rocky shore. Describe LOWER SHORE There was only one species of seaweed found in

the lower shore, Fucus serratus, and it was very abundant. However, several

species of animal were found, such as Gibbula cineraria, Littorina obtusata,

Littorina littorea, limpets (Patella spp.) and mussels (Myttilus edulis). Of

those, Gibbula cineraria was the most abundant. Fucus serratus: This species of

brown seaweed (Phaoephyta) was found only below the MLWN mark in stations 10, 11

and 12. It was most common in station 11 (40% cover), but there was not a lot of

difference in the distributions between these three stations. Fucus serratus is

a medium sized marine seaweed with a flattened, branched thallus with a small

stipe for support and a small holdfast. At the ends of the thalli, there are

small, swollen areas called receptacles, which contain many conceptacles, in

which gamete production occurs. There are many air bladders on Fucus serratus,

which cause it to float when submerged. As the name suggests, Fucus serratus has

a thallus with serrated, saw-like edges. Gibbula cineraria: This species of

topshell was found mainly in the lower shore, below the MLWN mark (stations

10,11, and 12), and in station 9 (just above the MLWN mark). It was evenly

distributed across stations 9, 10, and 11, with similar numbers in each quadrat

(between 40 and 50 individuals per quadrat). It was far less common in station

12, where only two individuals were found. Gibbula cineraria is a relatively

large snail, at just over 15-mm. It was a pale grey in colour and was found

beneath seaweeds such as Fucus serratus and Fucus vesiculosus. MIDDLE SHORE

Several species of seaweed were recorded in the middle shore. Fucus vesiculosus,

Ascophyllum nodosum and Polysiphona lanosa were all found, and Fucus vesiculosus

was the most abundant. Many animal species were recorded, such as Gibbula

umbilicalis, G. cineraria, Littorina saxatalis, L. obtusata, L. littorea,

limpets (Patella spp.) and mussels (Myttilus edulis). Of these Gibbula cineraria

was the most abundant. Fucus vesiculosus: This seaweed was found mainly in the

middle shore, between the MLWN and MHWN marks (stations 7,8 and 9), but also in

station 6 (just above the MHWN mark). There was a much lower density in stations

6,7 and 8 (between 3 and 12%), than in station 9, where the percentage cover was

30%. Fucus vesiculosus is similar to Fucus serratus (see above), with a

flattened, branched thallus and air bladders, but lacks the serrated edges of

Fucus serratus. Littorina obtusata agg.: This species of periwinkle was found in

the middle shore (stations 7,8 and 9) and the lower upper shore (station 6). It

was also recorded in station 12, at the lower end of the lower shore. It had the

highest population density in the middle shore (between 32 and 38 individuals

per metre), with a similar density in station 6. It was far less abundant in

station 12, with only 12 individuals recorded. Littorina obtusata agg. is a

small, flat periwinkle, mainly found on the underside of seaweeds such as Fucus

vesiculosus, Fucus spiralis and Ascophyllum nodosum, where it mimics air

bladders. It comes in a wide range of colour, but most individuals are a dark

olive green to match the seaweeds they live on. UPPER SHORE Again, several

species of seaweed were recorded in this zone, such as Fucus vesiculosus, F.

spiralis, Ascophyllum nodosum, Pelvetia canaliculata and Polysiphona lanosa.

Several animal species were also recorded, such as Littorina saxatalis, L.

obtusata and limpets (Patella spp.) Pelvetia canaliculata: This seaweed was

found in station 4 only (at the very upper limit of the littoral zone, just

below the EHWS mark), but was very abundant, covering 70% of the quadrat.

Pelvetia canaliculata has narrow thalli that are channelled and curl up into

loose rings. It is browny red in colour and has no air bladders for support.

Littorina saxatalis: This species of periwinkle was found across the whole upper

shore (stations 4,5 and 6) and at the top of the middle shore (station 7). It

was most abundant at the top of its range in station 4, where 141 individuals

were recorded. It became less and less abundant down the beach, at the bottom of

its range, in station 7, where only 20 individuals were recorded. Littorina

saxatalis is a medium-sized periwinkle, about 16-mm long. It has a ridged shell

that is orange-brown in colour, and is commonly found in crevices and cracks on

the upper shore. SPLASH ZONE The only plants found in the splash zone where

lichens such as Verrucaria maura, Xanthoria parientina, Ramalina siliquosa,

Lecanora atra and Ochrolechia parella. No animal species were recorded in this

zone. Xanthoria parientina: This species of foliose lichen was found throughout

the splash zone (stations 1,2 and 3), and was the largest range out of all the

lichens. It was not very abundant in each quadrat, never covering more than 8%

of the area (station 3) and some times as little as 1% (station 2). Xanthoria

parientina is a foliose lichen, which means it is only loosely attached to the

rock, and has large thalli. It was orangey yellow in colour. Explain The

environmental gradient on the seashore is constantly changing. This means that

there are a wide range of habitats to be found over a relatively small distance.

The wide range of species found on the seashore is due to the wide range of

habitats and conditions found there. Species can only be adapted to a small

range of conditions, so as the conditions on the seashore change, so do the

species found there. There are a number of factors that determine the specific

conditions of an area. These factors can be either biotic or abiotic. Biotic

factors are factors such as competition for resources, predator/prey

relationships, etc. Abiotic factors are factors like temperature, relief,

climate, etc. The abiotic factors that affect a rocky shore are: Desiccation:

all the species found on the shore are marine species, so spending time out of

water is stressful to them, as immersion in seawater provides them with food,

oxygen, water for photosynthesis and is needed for reproduction. Desiccation is

worse on the upper shore, as it is exposed for the longest time, but also

affects the middle shore. Temperature: Seawater remains at a far more constant

temperature that the land, (seawater varies between 5? and 15? Celsius,

whereas the land temperature varies between below freezing in winter and 30? C

plus in summer) so species that are immersed in seawater for long periods of

time are buffered against large temperature changes. The temperature of the

surroundings also affects the rate of metabolism; very cold conditions will slow

it down, whereas very high temperatures may denature vital enzymes. Again,

temperature change is a worse problem on the upper and middle shores than on the

lower shore. Wave action: The action of powerful waves can dislodge many

species, so those that live on the middle shore (where wave action is at its

most powerful) must be adapted to survive very rough conditions. Wave action

also increases the humidity of an area, and so can help to reduce desiccation.

Light: Light is needed for photosynthesis, and all seaweeds must be immersed in

water for this to occur. Water filters off some of the wavelengths of light and

reduces the intensity that reaches the seaweeds. To maximise the light that does

reach them red and brown seaweeds have accessory pigments that help to absorb

different wavelengths of light. These accessory pigments mask the green

chlorophyll in red and brown seaweeds, and they take the colour of the accessory

pigment that they utilise. Other factors: the above factors are the main abiotic

factors, but others are also present. The aspect of a slope affects the

temperature and rate at which water evaporates, so south facing slopes are

warmer, but dry faster, while north facing slopes are cooler and damper. The

steepness of a slope also affects the rate at which it drains, as a steeper

slope drains faster than a shallower one, so desiccation is more of a problem.

The turbidity or cloudiness of seawater (due to plankton, sewage and other

detritus) can affect the intensity of light reaching submerged seaweeds. Another

factor is the seepage of freshwater onto the shore. Many seaweeds cannot

tolerate salinity changes, so other species that can tolerate such changes will

inhabit these areas. The biotic factors that affect the rocky shore tend to

affect the lower limits at which a species may live. The biotic factors that

affect the distribution of organisms on the rocky shore are: Food supply: All

organisms need food to survive and so can only flourish in areas in which they

can find food. Many species that are found on the seashore left the sea in

search of food supplies. For organisms, such as barnacles, which depend on food

carried by the waves, far more food will be found in the intertidal zone that at

the bottom of the sea. Predation: Many species also live on the seashore in an

attempt to evade marine predators, such as fish, crabs, lobsters etc, that are

far more common in the sea than on the shore. Organisms will also try to live as

far up the shore as possible in order to avoid their less well adapted

predators. Predation is an important factor regulating the population of many

organisms. Reproduction: Most marine organisms still rely on the sea for

reproduction, so animal species, such as crabs, may migrate lower down the shore

in order to release their gametes. Seaweeds and non-mobile animals must rely on

the tides to submerge them before releasing their gametes. Competition: This is

the most important biotic factor determining the distribution of species on the

seashore. There are two types of competition, interspecific (between two

different species) and intraspecific (between individuals of the same species).

Organisms compete for all the resources that are in short supply. On the

seashore, most resources are in short supply, so organisms compete for space,

food, and light. Only species that are very efficient in utilising in demand

resources will flourish and survive. Eventually, the will competitively exclude

other species, or members of their own species. Despite the more stressful

conditions further up the shore, species live as far above the ELWS mark as

possible in an attempt to avoid competition with other species. For example,

Fucus spiralis is very well adapted to surviving long periods out of water, so

it is found in the upper shore. It is not found in the middle and lower shores

because competition with other species of seaweeds such as Fucus vesiculosus and

Fucus serratus prevents them from surviving, so no specimens are found. Species

can adapt to these different factors in three ways. They can adapt in physical,

physiological or behavioural ways. Physical adaptations are those that modify

the external appearance of an organism, physiological adaptations are those that

modify the internal organisation of an organism and behavioural adaptations are