Мир Знаний

Методы переноса генетического материала в клетки млекопитающих (стр. 2 из 3)

2.2 Получение клеточных гибридов с помощью слияния, индуцированного ПЭГ

Таблица 2. Основные растворы, необходимые для слияния клеток

Среда для роста клетокСреда для роста клеток без эмбриональной телячьей сыворотки Обычно мы используем среду Игла, модифицированную Дульбекко, с добавлением эмбриональной телячьей сыворотки, однако состав культуральной среды прямо на процесс слияния не влияет
Селективная среда Культуральная среда, пригодная для селекции гибридных клеток
50%-ный раствор ПЭГ, приготовленный в бессывороточной среде 5,5 г ПЭГ 4000 н 5 мл бессывороточной среды смешивают и авто-клавируют. Конечный рН доводят до 8,2, раствор нагревают до 37 °С непосредственно перед использованием

2.3 Возможные ошибки и варианты методики

Некоторые линии клеток сливаются с трудом, если же все-таки необходимы именно такие комбинации, попытайтесь сделать следующее.

1. Варьируйте соотношение родительских клеток в диапазоне 1:10–10:1.

2. Попробуйте разный ПЭГ:

а) поменяйте партию ПЭГ. В наших экспериментах та партия ПЭГ, которая давала хорошие результаты при слиянии одного типа клеток, эффективно работала и с другими. Хорошо зарекомендовавший себя препарат необходимо отделить и аккуратно хранить. По некоторым данным свойства ПЭГ могут быть улучшены использованием растворов, не содержащих солей кальция;

б) варьируйте молекулярный вес. Как правило, повышение молекулярного веса влечет за собой увеличение способности индуцировать слияние. Однако раствор ПЭГ с большим молекулярным весом обладает большей вязкостью, что затрудняет отмывку клеток. Так как ПЭГ является

Для каждой конкретной клеточной линии необходимо подобрать оптимальную концентрацию колцемида и время экспозиции. Образование мини-клеток легко контролируется под фазово-контрастным микроскопом. В удачных экспериментах около 50% всех клеток образуют мини-клетки. Эта частота увеличивается после обработки цитохала-зином В.

Второй день

3. Спустя 16 ч замените среду на среду, содержащую цитоха-лазин В в концентрации 2 мкг/мл; инкубируйте в течение ночи.

4. Исходные градиентные растворы поместите в сосуды с неплотно завинченными крышками и инкубируйте в атмосфере 5% СОг при 37 °С в течение ночи.

5. Заранее нагрейте ротор SW41.

Третий день

6. Приготовление ступенчатого градиента фиколла. Тщательно промойте необходимое количество центрифужных пробирок для ротора SW41 абсолютным спиртом, высушите в перевернутом положении в ламинарном боксе. Приготовьте градиент фиколла, используя уравновешенные исходные растворы.

7. Соберите обработанные колцемидом и цитохалазином клетки и осадите их центрифугированием. Ресуспендируйте в 3 мл 10%-ного фиколла и мягко наслоите на градиент. Заполните центрифужные пробирки раствором без фиколла.

8. Поместите пробирки, содержащие градиент, в нагретый ротор SW41 и поставьте ротор в заранее нагретую до 37 °С ультрацентрифугу.

9. Центрифугируйте 1 ч при 25000 об/мин при 37 °С; используйте минимальное ускорение при разгоне и минимальное торможение, чтобы предотвратить разрушение градиента.

10. Выньте пробирки из центрифуги. Мини-клетки образуют рыхлые полоски в градиенте между 15:16% и 16:17% фиколлом. Осторожно отберите эти полоски, используя стерильную пастеровскую пипетку, вводя ее через верх градиента; поместите мини-клетки в новую, стерильную центрифужную пробирку от ротора SW41 и заполните ее средой для роста клеток. Загрязнение фрагментами цитоплазмы, ядрами и целыми клетками можно контролировать под фазово-контрастным микроскопом.

11. Центрифугируйте при 20 000 об/мин при комнатной температуре в роторе SW41 10 мин при максимальном ускорении и торможении. Эта процедура осаждает мини-клетки и отделяет их от фиколла.

12. Для дальнейшей очистки мини-клеток мы предлагаем три различных приема. Очистка не нужна, лишь когда в распоряжении исследователей имеется четкая система селекции. В этом случае они могут сразу использовать мини-клетки для слияния с клетками-реципиентами.

13. Слияние мини-клеток с целыми клетками. Соберите клетки-реципиенты и отмойте их бессывороточной средой. Добавьте приблизительно 107 клеток-реципиентов к осадку мини-клеток в 2 мл бессывороточной ростовой среды, содержащей 100 мкг/мл фитогемагглютинина. Поместите в пластиковый сосуд с коническим дном и инкубируйте 10 мин при 37 °С.

14. Осадите центрифугированием.

15. Процедуру слияния мини-клеток с целыми клетками проводите с помощью ПЭГ, как указано в соответствующей методике.


3. Перенос генов, опосредованный хромосомами JCMGTJ

3.1Введение

Метод CMGT может быть использован для переноса фрагментов хромосом из ядер клеток одного типа в ядра клеток другого типа. Теоретически клетки любого типа могут быть использованы как в качестве доноров, так и в качестве реципиентов хромосом. Однако на практике возможность применения метода определяется наличием подходящих реципиентных линий, обладающих повышенной способностью акцептировать чужеродную ДНК.

Высокая частота трансфекции может быть достигнута при использовании в качестве реципиентов иммортализованных мышиных клеток. Клеткам хомячка и иммортализованным человеческим клеткам обычно присуща более низкая частота трансфекции. Правда, недавно полученные результаты свидетельствуют о том, что человеческие клетки линии EJспособны трансфицироваться с высокой частотой. В роли донора с одинаковым успехом могут выступать самые разнообразные клеточные линии – как суспензионные, так и субстрат-зависимые. Предпочтительнее использовать в качестве донорных те линии, клетки которых легче культивировать и получать в больших количествах. Ниже описываются общие процедуры, обеспечивающие выделение донорных хромосом и перенос фрагментов этих хромосом в реципиентные клетки путем CMGT.

3.2 Выделение хромосом

В ходе описываемых процедур для предотвращения потерь и поломок хромосом, для обеспечения температурного режима необходимо использовать пластиковые пипетки и пробирки. Клетки блокируют на стадии митоза, митотические хромосомы высвобождают воздействием гипотонического шока и гомогенизацией. Хромосомы очищают дифференциальным центрифугированием.

Таблица. Исходные растворы на CMGT

Среда для роста клеток и селективная среда NB. Трансфекцию необходимо проводить в средах с небольшим содержанием фосфатов, таких, как DMEM. Клетки, растущие в средах, обогащенных фосфатами, непосредственно перед проведением трансфекции пересейте на среду, бедную фосфатами. Среды, обогащенные фосфатами, можно использовать при глицериновом шоке
Гипотонический раствор 10 мМ Hepes 3 мМ хлорида кальция
Раствор для трансфекции 25 мМ Hepes 134 мМ хлорида натрия 5 мМ хлорида калия 0,7 мМ дигидрофосфата натрия 5 мМ глюкозы
1,25 М хлорида кальция Раствор для отмывки 25 мМ Hepes 134 мМ хлорида натрия5 мМ хлорида калия0,7 мМ дигидрофосфата натрия

3.3 Перенос хромосом

Процесс переноса хромосом в этом случае очень напоминает описываемый в методе DMGT. Хромосомы осаждают на поверхности клеток хлоридом кальция, и спустя несколько часов клетки обрабатывают реагентом, способным перфорировать мембраны. Здесь тоже важно использовать пластиковые пробирки и пипетки. Последовательность действий, которая приведена ниже, разработана Нельсоном.

1. За день перед проведением трансфекции высейте по 5Х Х105 клеток на 10 чашек диаметром 9 см. Используйте низкофосфатную среду, например DMEM.

2. Ресуспендируйте 108 хромосом в 9 мл раствора для трансфекции.

3. Медленно добавьте к хромосомам 1 мл 1,25 М раствора СаС12, одновременно продувая воздух через суспензию хромосом.

4. Инкубируйте 20–30 мин при комнатной температуре для: образования смеси фосфат кальция – ДНК.

5. Добавьте по 1 мл этой смеси к среде в каждую чашку с реципиентными клетками. Инкубируйте клетки с хромосомами 4–6 ч в увлажняющем инкубаторе при 37 °С.

6. Удалите среду и добавьте 10 мл отмывочного раствора.

7. Удалите отмывочный раствор и обработайте клетки 1 мл среды для глицеринового шока в течение 4 мин при комнатной температуре.

8. Отмойте клетки 3 раза промывочным раствором и инкубируйте в течение ночи в неселективной среде для роста клеток.

9. Через 24 ч поменяйте среду на селективную. Меняйте среду на свежую каждые 3–4 дня.

10. Колонии появятся на 14–21-й день.

3.4 Предварительная селекция

При использовании DMGT донорная геномная ДНК обычно переносится вместе с плазмидой, кодирующей доминантный селективный маркер. Предварительная селекция, выявляющая включение плазмидной ДНК, позволяет получить 100-кратное обогащение клетками, содержащими интересующий нас клеточный ген. Аналогичный прием может быть использован и в CMGT. Для проведения котрансфекции необходимое количество плазмидной ДНК добавляют к суспензии хромосом перед преципитацией хлоридом кальция. Обычно мы добавляем плазмидную ДНК в количестве, достаточном для достижения соотношения 20:1. Селекцию проводим спутся 24 ч после хромосомной трансфекции.


3.5 Возможные ошибки и варианты методики

В литературе описано множество методов выделения хромосом из клеток, блокированных в метафазе. Процедуры очистки тоже разнообразны. Одни из них позволяют получить высокоочищенные препараты, другие–грубую фракцию хромосом, загрязненную разными компонентами клетки. Мы предпочитаем использовать для проведения трансфекции именно такие грубые препараты, во-первых, потому что их получение занимает мало времени, а во-вторых, потому что хромосомы при этом оказываются наименее разрушенными.