3. эндонуклеаза с молекулярной массой 18 кДа. Этот фермент был выделен из ядер погибающих путем апоптоза тимоцитов крыс [Гайдо, 1991]. Она отсутствовала в нормальных тимоцитах. Активность фермента проявляется в нейтральной среде и зависит от Са2+ и Мg2+.
4. γ-нуклеаза с молекулярной массой 31 кДа, имеющая «классическую» зависимость от ионов Са, Мg и Zn. Активность этого фермента повышалась в ядрах тимоцитов крыс, обработанных глюкокортикоидами [1994].
5. эндонуклеаза с молекулярной массой 22,7 кДа фермент, активность которого проявляется в ядрах тимоцитов крыс только после действия глюкокортикоидов и подавляется теми же ингибиторами, что и межнуклеосомная деградация ДНК [1993].
Каспазы
Каспазы – цистеиновые протеазы, которые расщепляют белки по аспарагиновой кислоте. В клетке каспазы синтезируются в форме латентных предшественников – прокаспаз. Существуют инициирующие и эффекторные каспазы. Инициирующие каспазы активируют латентные формы эффекторных каспаз. Субстратами для действия активированных каспаз служат более 60 различных белков. Это, например, киназа фокальных адгезионных структур, инактивация которой приводит к отделению апоптических клеток от соседей; это ламины, которые при действии каспаз разбираются; это цитоскелетные белки (промежуточные филаменты, актин, гельзолин), инактивация которых приводит к изменению формы клетки и к появлению на ее поверхности пузырей, которые дают начало апоптическим тельцам; это активируемая протеаза САD, которая расщепляет ДНК на олигонуклеотидные нуклео-сомные фрагменты; это ферменты репарации ДНК, подавление которых предотвращает восстановление структуры ДНК, и многие другие.
Одним из примеров разворачивания апоптозного ответа может являться реакция клетки на отсутствие сигнала от необходимого трофического фактора, например фактора роста нервов (NGF), или андрогена.
В цитоплазме клеток в присутствии трофических факторов находится в неактивной форме еще один участник реакции – фосфорилированный белок Ваd. В отсутствие трофического фактора этот белок дефосфорилируется и связывается с белком Вс1–2 на внешней митохондриальной мембране и этим ингибирует его антиапоптозные свойства. После этого активируется мембранный проапоптический белок Вах, открывая путь ионам, входящим в митохондрию. В это же время из митохондрий через образовавшиеся в мембране поры в цитоплазму выходит цитохром с, который связывается с адаптерным белком Араf‑1, который в свою очередь активирует прокаспазу 9. Активированная каспаза 9 запускает каскад других прокаспаз, в том числе каспазу 3, которые, будучи протеиназами, начинают переваривать мешенные белки (ламины, белки цитоскелета и др.), что вызывает апоптическую смерть клетки, ее распад на части, на апоптические тельца.
Апоптические тельца, окруженные плазматической мембраной разрушенной клетки, привлекают отдельные макрофаги, которые их поглощают и переваривают с помощью своих лизосом. Макрофаги не реагируют на соседние нормальные клетки, но узнают апоптические. Это связано с тем, что при апоптозе нарушается асимметрия плазматической мембраны и на ее поверхности появляется фосфатидилсерин, негативно заряженный фосфолипид, который в норме располагается в цитозольной части билипидной плазматической мембраны. Таким образом, путем избирательного фагоцитоза ткани как бы очищаются от погибших апоптозных клеток.
Наличие контрольных точек в клеточном цикле необходимо для определения завершения его каждой фазы. Остановка клеточного цикла происходит при повреждении ДНК в G1 периоде, при неполной репликации ДНК в S‑фазе, при повреждении ДНК в G2‑периоде и при нарушении связи веретена деления с хромосомами.
Одним из контрольных пунктов в клеточном цикле является собственно митоз, который не переходит в анафазу при неправильной сборке веретена и при отсутствии полных связей микротрубочек с кинетохорами. В этом случае не происходит активации АРС-комплекса, не происходит деградации когезинов, соединяющих сестринские хрома-тиды, и деградации митотических циклинов, что необходимо для перехода в анафазу.
Повреждения ДНК препятствуют вхождению клеток в S‑период или в митоз. Если эти повреждения не катастрофические и могут быть восстановлены за счет репаративного синтеза ДНК, то блок клеточного цикла снимается, и цикл доходит до своего завершения. Если же повреждения ДНК значительные, то каким-то образом происходят стабилизация и накопление белка р53, концентрация которого в норме очень низкая из-за его нестабильности. Белок р53 является одним из факторов транскрипции, который стимулирует синтез белка р21, являющегося ингибитором комплекса СDК-циклин. Это приводит к тому, что клеточный цикл останавливается на стадии G1или G2. При блоке в G1‑периоде клетка с повреждением ДНК не вступает в S‑фазу, так как это могло бы привести к появлению мутантных клеток, среди которых могут быть и опухолевые клетки. Блокада в G2‑периоде также предотвращает процесс митоза клеток с повреждениями ДНК. Такие клетки, с блокированным клеточным циклом, в дальнейшем погибают путем апоптоза, программированной клеточной гибели (рис. 353).
Избирательные повреждения митохондрий, при которых в цитоплазму высвобождается цитохром с, также являются частой причиной развития апоптоза. Особенно митохондрии и другие клеточные компоненты страдают при образовании токсически активных форм кислорода (АТК), под действием которых во внутренней мембране митохондрий образуются неспецифические каналы с высокой проницаемостью для ионов, в результате чего матрикс митохондрий набухает, а внешняя мембрана разрывается. При этом растворенные в межмембранном пространстве белки вместе с цитохромом с выходят в цитоплазму. Среди освободившихся белков есть факторы, активирующие апоптоз, и прокаспаза 9.
Многие токсины (рицин, дифтерийный токсин и др.), а также антиметаболиты могут вызывать гибель клеток путем апоптоза. При нарушении синтеза белка в эндоплазматическом ретикулуме в развитии апоптоза участвует локализованная там прокаспаза 12, которая активирует ряд других каспаз, и в том числе каспазу 3.
Элиминация – удаление отдельных клеток путем апоптоза, наблюдается и у растений. Здесь апоптоз включает в себя, так же как у животных клеток, фазу индукции, эффекторную фазу и фазу деградации. Морфология гибели клеток растений сходна с изменениями клеток животных: конденсация хроматина и фрагментация ядра, олигонуклеотидная деградация ДНК, сжатие протопласта, его дробление на везикулы, разрыв плазмодесм и т.д. Однако везикулы протопласта разрушаются гидролазами самих везикул, так как у растений нет клеток, аналогичных фагоцитам. Так, ПКС происходит при росте клеток корневого чехлика, при формировании перфораций у листьев, при образовании ксилемы и флоэмы. Опадание листьев связано с избирательной гибелью клеток определенной зоны черенка.
Биологическая роль апоптоза, или программированной смерти клеток, очень велика: это удаление отработавших свое или ненужных на данном этапе развития клеток, а также удаление измененных или патологических клеток, особенно мутантных или зараженных вирусами.
Итак, для того чтобы клетки в многоклеточном организме существовали, нужны сигналы на их выживание – трофические факторы, сигнальные молекулы. Эти сигналы могут быть переданы на расстояние и уловлены соответствующими рецепторными молекулами на клетках-мишенях (гормональная, эндокринная сигнализация), это может быть паракринная связь, когда сигнал передается на соседнюю клетку (например, передача нейромедиатора). При отсутствии таких трофических факторов реализуется программа апоптоза. В то же время апоптоз может вызываться сигнальными молекулами, например при резорбции хвоста головастиков под действием тироксина. Кроме того, действие ряда токсинов, влияющих на отдельные звенья метаболизма клетки, также может стать причиной клеточной гибели посредством апоптоза.
Апоптоз в патогенеза заболеваний
1. В иммунной системе
2. ОНКОЛОГИЧЕСКИЕ ЗАБОЛЕВАНИЯ
3. ВИРУСНАЯ ИНФЕКЦИЯ (индуцирующие апоптоз: в. иммунодефицита человека‚ в. анемии циплят; ингибирующие апоптоз: цитомегаловирус‚ в. Эпштейна-Барр‚ в. герпеса)
4. А. и НЕЙРОНЫ КОРЫ ГОЛОВНОГО МОЗГА
ПРИНЦИПЫ КОРРЕКЦИИ АПОПТОЗА КЛЕТКИ
Открытие регулируемого процесса гибели клетки – апоптоза–позволило определенным образом воздействовать на его отдельные этапы с целью регуляции или коррекции.
Биохимические процессы развития апоптоза можно гипотетически разделить на несколько этапов:
- действие фактора, вызывающего апоптоз;
- передача сигнала с рецепторной молекулы в клеточное ядро;
- активация апоптозспецифических генов;
- синтез апоптозспецифических белков
- активация эндонуклеаз
- фрагментацию ДНК (рис. 2.4).
В настоящее время считают, что если клетка погибает путем апоптоза, то подразумевается возможность терапевтического вмешательства, если вследствие некроза, то такое вмешательство невозможно. На основе знаний регуляции запрограммированной гибели клетки используется широкий ряд препаратов с целью воздействия на этот процесс в различных типах клеток.