Смекни!
smekni.com

Мутация вирусов, характеристика мутагенов (стр. 3 из 4)

Однако при длительных пассажах в куриных эмбрионах не всегда отмечали снижение вирулентности (вирусы ньюкаслской болезни, инфекционного аборта лошадей, лошадиного энцефаломиелита, западнонильского и венесуэльского энцефалитов, оспы птиц, классической чумы птиц и др.) Так, из 16 штаммов вируса чумы крупного рогатого скота только один штамм утратил вирулентность, сохранив иммуногенные свойства. Изменчивость вирусов при пассажах в куриных эмбрионах зависит от ряда условий: свойств штамма вируса, возраста эмбрионов, способа их заражения, чередования пассажей на восприимчивом животном и эмбрионе и других факторов.

Изменчивость вирусов при пассажах на культуре клеток.

Культура клеток – одна из наиболее применяемых методов для изменения вирулентности и других свойств вирусов. Широкое использование этого способа дало возможность получать наследственно измененные варианты вирусов и селекционировать их из генетически неоднородной вирусной популяции. Кроме первично трипсинизированных тканей, с этой целью широко использовали перевиваемые линии клеток. Причем отдельные клеточные линии могут быть высокочувствительными к определенным вирусам, но тем не менее в них вирус не накапливается в высоких титрах. Другие же клеточные линии, обладают пониженной чувствительности к вирусам, обеспечивает накопление их высоких концентрациях.

Используя перевиваемую или первичные культуры ткани, были выделены аттенуированные штаммы вируса классической чумы птиц. Вирулентность вируса японского инцефалита была ослаблена пассированием в культуре клеток почки Хомика с последующими пассажами на мышах–сосунках. Выделенный вариант вируса утратил вирулентность для мышей при внутримозговом заражении и не передавался комарами.

За последние годы появилось много обнадеживающих сообщений о получении стабильных вирулентных штаммов вируса ящура при пассаже на различных типах культуры тканей. После многократных пассажей в культуре тканей куриного эмбриона вируса желтой лихорадки наблюдали утрату нееротропных и висцетропных свойств для обезьян с сохранением иммуногенности. Этот вариант (штамм 17 Д) успешно используется для приготовления живой вакцины.[4]

При пассажах вируса полиомиелита в культуре почечной ткани обезьян был выделен ряд мутантов, не вызывающих у обезьян параличей при введении в головной и спиной мозг. Авирулентные штаммы были получены при быстро следующих друг за другом пассажах, благодаря чему создаются благоприятные условия для отбора вариантов, обладающих наибольшей активностью размножения. Сочетая отбор с многократными пассажами, были выделены мутанты с наследственно ослабленной нейровирулентностью для обезьян. Для снижения вирулентности необходимо было проделать 20-40т пассажей.

Изменчивость вирусов, возникающая в процессе пассажей при повышенных и пониженных температурах.

Убедительные данные об ослаблении вирулентности в процессе пассажей при пониженной температуре полученных в опытах с вирусом ящура. Вирус пассировали на первичных культурах почки телят при 37°, 28° и 22° . Вирулентность проверяли на свиньях и мышах сосунках. Как выяснилось, все авирулентные для свиней варианты не размножались в культуре клеток при 40°. В то же время вирулентные и авирулентные штаммы одинаково активно размножались при 28°, а при 22° активно репродуцировались только авирулентные варианты. Однако не у всех авирулентных для свиней штаммов оптимум температуры размножения был ниже 37°. Отдельные варианты более активно размножались при 37° и не размножались при 22°. Таким образом, не во всех случаях ослабление вирулентности для свиней и мышей сопровождалось изменением активности репродукции при пониженных температурах, что не дает основания считать основание абсолютной взаимосвязи у ящура между вирулентностью и активностью репродукции при пониженной и пониженной температурах.

В ряде наблюдений была так же показана возможность получение авирулентных вариантов у других вирусов в процессе пассажа их при пониженных температурах (гриппа, чумы свиней, полиомиелита, кори, японского энцефалита и др.). Так, при пассажах вирусах гриппа на куриных эмбрионах при пониженных (32-25°С) температурах были селекционированые мутанты, более активно размножающие при 28° и 32°, чем при 36°. У них закономерно наблюдалось ослабление или утрата вирулентности и токсических свойств. И, наоборот, мутанты селекционированные в процессе пассажей при повышенных температурах, более активно размножались при 39° и 41°, чем исходные штаммы. Варианты утратили свойства размножаться при 25-28°С.

Сходные результаты были получены в опытах с другими видами вирусов. На основании проведенных исследований можно сделать выводы, что пассажи вирусов при пониженных температурах, как правило, приводили к появлению вариантов с ослабленной вирулентностью. Снижение или полная утрата ее в ряде случаев коррелировали с утратой способности размножаться при повышенных температурах.

Причина изменчивости вирусов при пассажах еще мало выяснены. Согласно селекционной теории, культура вируса генетически не однородна и в процессе пассажей на животных или культуре клеток происходит отбор и накопление вариантов для которого данное условие культивирование более благоприятно. Другая возможная причина возникновения вариантов при пассажах - рекомбинация вирусов.[5]

Изменчивость вирусов при пассажах принципиально не отличается от мутации, возникающих при воздействии физическими и химическими мутогенами, так как в обоих случаях изменения признаков у вируса связаны с изменениями в его генотипе. Различия между ними несущественные, главным образом количественные. Одна из особенностей изменчивости при пассажах состоит в том, что для изменения генетических признаков, особенно таких сложных полигинных признаков, как патогенность или репродуктивная активность, требуется ряд мутаций, возникающих в серии пассажей. Такого типа многоступенчатые мутации являются отражением процесса перехода количественных изменений в качественные. Следует при этом отметить, что изменения свойств у вирусов при пассажах возникают раньше, чем мы их обнаруживаем. С момента появления первых изменений до выявления их проходит, какой то период количественных изменений, которые на каком то этапе пассажей переходит в качественные, существенно изменяющие наследственные признаки вируса.

Химические мутагены

Предложено три классификации химических мутагенов:

Рехборна, Фриза, Раппопорта.

Фриз предложил разделить мутагены на две основные группы:

1) мутагены, реагирующие с нуклеиновой кислотой только во время ее репликации;

2) мутагены, вступающие в реакцию с покоящейся молекулой нуклеиновой кислоты, но требующие для формирования мутащий последующих ее репликаций.

В основе молекулярных изменений вирусной нуклеиновой кислоты, приводящих к мутации, лежат два основных процесса: замена основания или вставка основания. Различают два типа замены оснований: простую (транзиция) – на место одного пуринового основания встает другое или одно пиримидиновое основание заменяется другим; сложную (трансверсия) – вместо пуринового основания появляется пиримидиновое или пиримидиновое основание заменяется пуриновым. Вставка основания – ведет более к глубоким изменениям генетического кода, чем простая замена оснований. В то же время основой изменения генетического признака, имеющего одно и то же фенотипическое выражение, могут быть мутационные повреждения различных генов.

Кроме простых замен, алкилирующие агенты способны индуцировать сложные замены – пурин на пиримидин. Мутагенное действие этих соединений было показано с вирусами ньюкаслской болезни и клещевого энцефалита.

Гидроксиламин индуцирует мутации по типу образования простых замен оснований в нуклеиновой кислоте, направление которых зависит от типа нуклеиновой кислоты, которую содержит вирус. С помощью гидроксиламина были индуцированы мутации у вирусов герпеса, ньюкаслской болезни, полиомиелита.

В последнее время был синтезированный и изучен один из аналогов гидроксиламина – оксиметилгидроксиламин (ОМГА), реагирующий только с цитозином, но не с урацилом РНК, а следовательно, обладающий более высокой специфичностью и одной направленностью мутагенного действия.

Для вирусов человека и животных мутагеном является и формальдегид, с помощью которого были индуцированы мутанты у вируса полиомиелита и вируса западного энцефаломиелиталошадей при воздействии на очищенную РНК и внутриклеточный вирус. Механизм мутагенного действия формальдегида недостаточно изучен.

Механизм действия азотистой кислоты (НNО2) как мутагена на нуклеиновые кислоты заключается в дезаминировании органических оснований, т. е. отщепление от их молекул аминогруппы (NH2).

Физические мутагены

Мутагенное действие ультрафиолетового излучения.Действие УФ лучей как мутагенов состоит в том, что они взаимодействуют с молекулами нуклеиновых кислот и поглощаются ими, особенно лучи с длинной волны 260 – 280 нм. Попадая в молекулу нуклеиновой кислоты, они поглощаются входящими в ее состав органическими основаниями. Оказалось, что тимин, урацил, цитозин более чувствительны к ультрафиолетовым лучам, чем аденин и гуанин. При облучении УФ-лучами две соседние молекулы тиминов соединяются друг с другом в пары, образуя так называемые тиминовые димеры.

Под влиянием УФ-облучения получен мелкобляшечный мутант вируса западного лошадиного энцефаломиелита, обладающий стабильным S-фенотипом в культуре клеток ФКЭ. Установлена принципиальная возможность получения мутаций при воздействии УФ-лучей на репродуцирующийся вирус и его нуклеиновую кислоту, в которой происходят структурные нарушения РНК: компонент ее – урацил – образует диаметр и гидраты.