Смекни!
smekni.com

A Technical Analysis Of Ergonomics And Human (стр. 2 из 2)

and limitations are. In general, controls serve one of four actions:

activation, discrete setting, quantitative setting, and continuous control.

Activation controls are those that toggle a system on or off, like a light

switch. Discrete setting switches are variable position switches with three or

more options, such as a fuel selector switch with three settings. Quantitative

setting switches are usually knobs that control a system along a predefined

quantitative dimension, such as a radio tuner or volume control. Continuous

controls are controls that require constant equipment control, such as a

steering wheel. A control is a system, and therefore follows the same

guidelines for system design described above. In general, there are a few

guidelines to control design that are unique to that system. Controls should be

easily identified by color coding, labeling, size and shape coding and location

(Bailey, 258-64). When designing controls, some general principles apply.

Normal requirements for control operation should not exceed the maximum

limitations of the least capable operator. More important controls should be

given placement priority. The neutral position of the controls should

correspond with the operator’s most comfortable position, and full control

deflection should not require an extreme body position (locked legs, or arms).

The controls should be designed within the most biomechanically efficient design.

The number of controls should be kept to a minimum to reduce workload, or when

that is not possible, combining activation controls into discrete controls is

preferable. When designing a system, it should be noted that foot control is

stronger, but less accurate than hand control. Continuous control operation

should be distributed around the body, instead of focused on one particular part,

and should be kept as short as possible (Damon, 291-2). Detailed studies have

been conducted about control design, and some concerns were such things as the

ability of an operator to discern one control with another, size and spacing of

controls, and stereotypes. It was stated that even with vision available,

easily discernible controls were mistaken for another (Fitts, 898; Adams, 276).

A study by Jenkins revealed a set of control knobs that were not prone to such

error, or were less likely to yield errors (Adams, 276-7). Some of these have

been incorporated in aircraft designs as recent as the Boeing 777. Another

study, conducted by Bradley in 1969 revealed that size and spacing of knobs was

directly related to inadvertent operation. He believed that if a knob were too

large, small, far apart, or close together, the operator was prone to a greater

error yield. In the study, Bradley concluded that the optimum spacing between

half-inch knobs would be one inch between their edges. This would yield the

lowest inadvertent knob operation (Fitts, 901-2; Adams, 278). Population

stereotypes address the issue of how a control should be operated (should a

light switch be moved up, to the left, to the right, or down to turn it on?).

There are four advantages that follow a model of ideal control relationship.

They are decreased reaction time, fewer errors, better speed of knob adjustment,

and faster learning. (Van Cott & Kinkdale, 349). These operational advantages

become a great source of error to the operator unfamiliar with the aircraft and

experiencing stress. During a time of high workload, one characteristic of the

Liveware component is to revert to what was first learned (Adams, 279-80). In

the case of the Bonanza and Baron pilots, this was the case in mistaking the

gear and flap switches.

VI. Displays

In late 1986, the NTSB released the following recommendation to the FAA

based on three accidents that had occurred within the preceding two years:

“A-86-105. Issue an Air Carrier Operations Bulletin-Part 135, directing

Principal Operations Inspectors to ensure that commuter air carrier training

programs specifically emphasize the differences existing in cockpit

instrumentation and equipment in the fleet of their commuter operators and that

these training programs cover the human engineering aspects of these differences

and the human performance problems associated with these differences” (NTSB

database).

The instrumentation in a cockpit environment provides the only source of

feedback to the pilot in instrument flying conditions. Therefore, it is a very

valuable design characteristic, and special attention must be paid to optimum

engineering. There are two basic kinds of instruments that accomplish this

task: symbolic and pictorial instruments. All instruments are coded

representations of what can be found in the real world, but some are more

abstract than others. Symbolic instrumentation is usually more abstract than

pictorial (Adams, 195-6). When designing a cockpit, the first consideration

involves the choice between these two types of instruments. This decision is

based directly on the operational requirements of the system, and the purpose of

the system. Once this has been determined, the next step is to decide what sort

of data is going to be displayed by the system, and choose a specific instrument

accordingly.

Symbolic instrumentation usually displays a combination of four types of

information: quantitative, qualitative, comparison, and reading checking (Adams,

197). Quantitative instruments display the numerical value of a variable, and

is best displayed using counters, or dials with a low degree of curvature. The

preferable orientation of a straight dial would be horizontal, similar to the

heading indicator found in glass cockpits. However, conflicting research has

shown that no loss accuracy could be noted with high curvature dials (Murrell,

162). Another experiment showed that moving index displays with a fixed pointer

are more accurate than a moving pointer on a fixed index (Adams, 200-1).

Qualitative readings is the judgment of approximate values, trends, directions,

or rate of variable change. This information is displayed when a high level of

accuracy is not required for successful task completion (Adams, 197). A study

conducted by Grether and Connell in 1948 suggested that vertical straight dials

are superior to circular dials because an increase in needle deflection will

always indicate a positive change. However, conflicting arguments came from

studies conducted a few years later that stated no ambiguity will manifest

provided no control inputs are made if a circular dial is used. It has also

been suggested that moving pointers along a fixed background are superior to

fixed pointers, but the few errors in reading a directional gyro seem to

disagree with this supposition (Murrell, 163). Comparisons of two readings are

best shown on circular dials with no markings, but if they are necessary, the

markings should not be closer than 10 degrees to each other (Murrell, 163).

Check reading involves verifying if a change has occurred from the desired value

(Adams, 197). The most efficient instrumentation for this kind of task are any

with a moving pointer. However, the studies concerning this type of

informational display has only been conducted with a single instrument. It is

not known if this is the most efficient instrument type when the operator is

involved in a quick scan (Murrell, 163-4).

The pictorial instrument is most efficiently used in situation displays,

such as the attitude indicator or air traffic control radar. In one experiment,

pilots were allowed to use various kinds of situation instruments to tackle a

navigational problem. Their performance was recorded, and the procedure was

repeated using different pilots with only symbolic instruments. Interestingly,

the pilots given the pictorial instrumentation performed no navigation errors,

whereas those given the symbolic displays made errors almost ten percent of the

time (Adams, 208-209). Regardless of these results, it has long been known that

the most efficient navigational methods are accomplished by combining the

advantages of these two types of instruments.

VII. Summary

The preceding chapters illustrate design-side techniques that can be

incorporated by engineers to reduce the occurrence of mishaps due to Liveware-

Hardware interface problems. The system design model presented is ideal and

theoretical. To practice it would cost corporations much more money than they

would save if they were to use less cost-efficient methods. However, today’s

society seems to be moving towards a global concensus to take safety more

seriously, and perhaps in the future, total human factors optimization will

become manifest. The discussion of biomechanics in chapter three was purposely

broad, because it is such a wide and diverse field. The concepts touched upon

indicate the areas of concern that a designer must address before creating a

cockpit that is ergonomically friendly in the physical sense. Controls and

displays hold a little more relevance, because they are the fundamental control

and feedback devices involved in controlling the aircraft. These were discussed

in greater detail because many of those concepts never reach the conscious mind

of the operator. Although awareness of these factors is not critical to safe

aircraft operation, they do play a vital role in the subconscious mind of the

pilot during critical operational phases under high stress. Because of the

unpredictable nature of man, it would be foolish to assume a zero tolerance

environment to potential errors like these, but further investigation into the

design process, biomechanics, control and display devices may yield greater

insight as far as causal factors is concerned. Armed with this knowledge,

engineers can set out to build aircraft not only to transport people and

material, but also to save lives.