Смекни!
smekni.com

Основные типы взаимодействий генов (стр. 4 из 5)

По типу кумулятивной полимерии наследуются многие количественные признаки, например цвет кожи у человека; молочность, яйценоскость, масса и другие признаки сельскохозяйственных животных; длина колоса у злаков, содержание сахара в корнеплодах сахарной свеклы и др. Изучением наследования таких признаков занимается специальный раздел генетики - генетика количественных признаков, которая важна прежде всего для селекции и разработки проблем микроэволюции.

3.4 Гены-модификаторы

Основателем генетики количественных признаков в нашей стране был Ю.А. Филипченко. Он изучал наследование размеров черепа крупного рогатого скота, длины колоса пшеницы и даже умственных способностей у человека. В одной из работ 1928 г. он опубликовал данные о наследовании длины колоса при скрещивании двух форм пшеницы. В F2он наблюдал распределение по длине колоса, хорошо согласующееся с гипотезой о моногенном различии по этому признаку. Однако последующий анализ показал, что наряду с «основным» геном, определяющим длину колоса, существует ряд генов-модификаторов этого признака. Подобный тип наследования встречается часто. Таким образом, фенотип, как правило, представляет собой результат сложного взаимодействия генов. Природа генов-модификаторов до сих пор вызывает споры: в частности, не ясно, существуют ли специальные модификаторы, функция которых заключается в изменении действия других - «основных» генов или модифицирующее действие гена - результат его плейотропии.

4. Плейотропное действие генов

Учитывая данные, изложенные в этой главе, следует заключить, что не бывает однозначного соотношения между генотипом и фенотипом. Справедливость этого положения подчеркивает и тот факт, что один и тот же ген может в конечном итоге действовать на различные признаки организма.

Первый пример такого множественного, или плейотропного, действия гена содержится в работе Менделя, а именно: окраска цветков и окраска семенной кожуры зависели в его опытах от одного наследственного задатка. У высших растений гены, обусловливающие красную (антоциановую) окраску цветков, одновременно контролируют красную окраску стебля. У человека известен доминантный ген, определяющий признак «паучьи пальцы» (арахнодактилия или синдром Марфана). Одновременно он определяет аномалии хрусталика глаза и порок сердца. В Западном Пакистане обнаружены люди - носители гена, определяющего отсутствие потовых желез на отдельных участках тела. Это одновременно определяет и отсутствие некоторых зубов.

Признак платиновой окраски шерсти у лисиц контролируется доминантным геном, который существует только в гетерозиготе, поскольку обладает рецессивным летальным действием. При скрещивании платиновых лис наблюдали расщепление на платиновых и серебристо-черных в соотношении 2:1. Такое соотношение может получаться, если платиновые лисицы гетерозиготны (Аа), а черные гомозиготны по рецессивной аллели того же гена (аа). При этом не выживают гомозиготы по доминантной аллели (АА). Такое предположение подтверждается результатами скрещивания платиновых и серебристо-черных лис. Как и следует ожидать, при анализирующем скрещивании получается расщепление на платиновых и серебристо-черных в отношении 1:1. По этой же схеме наследуется наличие (аа) и отсутствие (Аа) чешуи у зеркального карпа, серая (Аа) и черная (аа) окраска каракулевых овец и т.д.

Множественное или плейотропное действие генов связывают с тем, на какой стадии онтогенеза проявляются соответствующие аллели. Чем раньше проявится аллель, тем больше эффект плейотропии.

Учитывая плейотропный эффект многих генов, можно предположить, что часто одни гены выступают в роли модификаторов действия других генов.


5. Пенетрантность, экспрессивность, норма реакции

Рассматривая действие гена, его аллелей, необходимо учитывать не только генные взаимодействия и действие генов-модификаторов, но и модифицирующее действие среды, в которой развивается организм. Известно, что у примулы окраска цветка розовая (Р-) - белая (рр) наследуется по моногибридной схеме, если растения развиваются в интервале температур 15-25°С. Если же растения F2вырастить при температуре 30-35°С, то все цветки у них оказываются белыми. Наконец, при выращивании растений F2в условиях температуры, колеблющейся около 30°С, можно получить разнообразные соотношения от 3Р:1ррдо 100% растений с белыми цветками. Такое варьирующее соотношение классов при расщеплении в зависимости от условий внешней среды или от условий генотипической среды (так назвал С.С. Четвериков варьирование генотипа по генам-модификаторам) носит название варьирующей пенетрантности: Это понятие подразумевает возможность проявления или непроявления признака у организмов, одинаковых по исследуемым генотипическим факторам.

Уже упоминался пример плейотропного действия гена - доминантная платиновая окраска лисиц с рецессивным летальным действием. Как показал Д.К. Беляев с сотрудниками, можно добиться рождения живых щенков, гомозиготных по доминантной аллели платиновой окраски, если варьировать длину дня для беременных самок. Таким образом, пенетрантность проявления летального эффекта может быть снижена (уже не будет 100%-ной).

Пенетрантность выражается долей особей, проявляющих исследуемый признак среди всех особей одинакового генотипа по контролируемому (изучаемому) гену.

От внешней среды и генов-модификаторов может зависеть и степень выраженности признака. Например, дрозофила, гомозиготная по аллели vgvg(зачаточные крылья), более контрастно проявляет этот признак при понижении температуры. Другой признак дрозофилы - отсутствие глаз (еуеу) варьирует от 0 до 50% от числа фасеток, характерного для мух дикого типа.

Степень проявления варьирующего признака называется экспрессивностью. Экспрессивность обычно выражают количественно в зависимости от уклонения признака от дикого типа.

Оба понятия - пенетрантность и экспрессивность - были введены в 1925 г. Н.В. Тимофеевым-Ресовским для описания варьирующего проявления генов (рис. 4).

Рис. 4 - Схема, поясняющая варьирование экспрессивности и пенетрантностипризнака

Тот факт, что признак может проявиться или не проявиться у особей данного генотипа в зависимости от условий или варьировать в различных условиях среды, убеждает в том, что фенотип - это результат действия (и взаимодействия) генов в конкретных условиях существования организма.

Способность генотипа так или иначе проявляться в различных условиях среды отражает норму его реакции - способность реагировать на варьирующие условия развития. Норму реакции генотипа необходимо учитывать как при экспериментах, так и при выведении новых форм хозяйственно ценных организмов. Отсутствие изменений в проявлении признака указывает на то, что используемое воздействие не влияет на данную норму реакции, а гибель организма - на то, что оно уже за пределами нормы реакции. Селекция высокопродуктивных форм растений, животных и микроорганизмов в значительной степени представляет собой отбор организмов с узкой и специализированной нормой реакции на такие внешние воздействия, как удобрения, обильное кормление, характер выращивания и др.

Искусственное сужение или сдвиг нормы реакции используют для маркирования многих жизненно важных генов. Так, были исследованы гены, контролирующие воспроизведение ДНК и синтез белка у бактерий и дрожжей, гены, контролирующие развитие дрозофилы, и др. При этом получали мутанты, нежизнеспособные при повышенной температуре культивирования, т.е. условно-летальные.

Таким образом, материал, рассмотренный в этой главе, показывает, что генотип представляет собой систему взаимодействующих генов, которые проявляются фенотипически в зависимости от условий генотипической среды и условий существования. Только благодаря использованию принципов менделеевского анализа можно условно разложить эту сложную систему на элементарные признаки – фены и тем самым идентифицировать отдельные, дискретные единицы генотипа – гены.


6. Влияние факторов внешней среды на действие генов

Влияние внешней среды: условий питания, температуры, света, химического состава и структуры почвы, влажности и т.п. - на индивидуальное развитие организма огромно. Человеку, занимающемуся сельскохозяйственным производством, очевидна роль внешней среды в формировании организмов. Внешняя среда определяет процессы отбора, изменчивости и наследственности, т.е. факторы эволюции. В соответствии с изменениями внешней среды развивался весь органический мир. Благодаря этому каждый вид организма приобрел своеобразное внутреннее строение и присущий ему тип индивидуального развития, закрепленные наследственностью.

Поскольку у организмов разных видов благодаря совместному действию указанных трех факторов эволюции выработались приспособления к определенным условиям внешней среды, их нормальное развитие стало возможно только при данных условиях. Изменение последних может приводить к изменению наследственных факторов (мутации), с чем мы познакомимся позднее, и к изменению процессов индивидуального развития, вызывающему видоизменение фенотипа, т.е. к изменению проявления действии генов. Реализация наследственного признака или свойства организма является результатом взаимодействия генотипа и условий внешней среды.

Создавая определенные внешние условия, можно направлять действие генов в нужную нам сторону, т.е. управлять процессами индивидуального развития организма. Генетики давно обратили на это внимание. Проблема управления индивидуальным развитием привлекла внимание И.В. Мичурина. Он показал, что наследственная потенция организма огромна, и, подставляя соответствующие внешние условия для развития гибридов плодовых и ягодных растений, можно изменять доминирование и выявлять наиболее ценные наследственные качества и свойства организма.