Вместе с тем уже во второй половине XIX в., и особенно в XX в., биология, прежде всего теория эволюции Дарвина, убедительно показала, что эволюция Вселенной не приводит к снижению уровня организации и обеднению разнообразия форм материи. Скорее, наоборот. История и эволюция Вселенной развивают ее от простого к сложному, от низших форм организации к высшим, от менее организованного к более организованному. Иначе говоря, старея, Вселенная обретает все более сложную организацию. Попытки согласовать второе начало термодинамики с выводами биологических и социальных наук долгое время были безуспешными. Классическая термодинамика не могла описывать закономерности открытых систем. Такая возможность появилась только с переходом естествознания к изучению открытых систем.[7]
Открытые системы - это такие системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне и (или) стока вовне вещества, энергии или информации. Причем приток и сток обычно носят объемный характер, т.е. происходят в каждой точке данной системы. Так, во всех компонентах биологического организма происходит обмен веществ, приток и отток вещества. Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных, неустойчивых состояний в противоположность замкнутым системам, неизбежно стремящимся к однородному равновесному состоянию.
Неравновесность, неустойчивость открытых систем порождается постоянной борьбой двух тенденций. Первая - это порождение и укрепление неоднородностей, структурирования, локализации элементов открытой системы. И вторая - рассеивание неоднородностей, «размывание» их, диффузия, деструктурализация системы. Если побеждает первая тенденция, то открытая система становится самоорганизующейся системой, а если доминирует вторая - открытая система рассеивается, превращаясь в хаос. А когда эти тенденции примерно равны друг другу, тогда в открытых системах ключевую роль - наряду с закономерным и необходимым - могут играть случайные факторы, флуктуационные процессы. Иногда флуктуация может стать настолько сильной, что существовавшая организация разрушается.
Но если большинство систем Вселенной носит открытый характер, то это значит, что во Вселенной доминируют не стабильность и равновесие, а неустойчивость и неравновесность. Вследствие этого Вселенная оказывается способной к развитию, эволюции, самоорганизации. Стабильные и равновесные системы не способны к самоорганизации, они являются тупиками эволюции.
Неравновесные системы благодаря избирательности к внешним воздействиям среды воспринимают различия во внешней среде и «учитывают» их в своем функционировании. При этом некоторые слабые воздействия могут оказывать большее влияние на эволюцию системы, чем воздействия, хотя и более сильные, но не адекватные собственным тенденциям системы. Иначе говоря, на нелинейные системы не распространяется принцип суперпозиции: здесь возможны ситуации, когда эффект от совместного действия причин А и В не имеет ничего общего с результатами воздействия А и В по отдельности.[8]
Процессы в нелинейных системах часто носят пороговый характер - при плавном изменении внешних условий поведение системы изменяется скачком. Другими словами, в состояниях, далеких от равновесия, очень слабые возмущения могут усиливаться до гигантских волн, разрушающих сложившуюся структуру и способствующих ее радикальному качественному изменению. Для каждой системы существует некий оптимальный «коридор нелинейности», способствующий структурообразованию. Очень сильная нелинейность, так же как и очень слабая нелинейность, несовместима с образованием локальных структур. Зато в пределах только оптимального «коридора» усиление нелинейности увеличивает количество способов образования и форм локальных структур, а также количество вариантов эволюции системы, ее маршрутов в будущее.
Нелинейные системы, являясь неравновесными и открытыми, сами создают и поддерживают неоднородности в среде. В таких условиях между системой и средой могут иногда создаваться отношения обратной положительной связи, т.е. система влияет на свою среду таким образом, что в среде вырабатываются условия, которые в свою очередь обусловливают изменения в самой этой системе. Последствия такого рода взаимодействия открытой системы и ее среды могут быть самыми неожиданными и необычными.
Самоорганизующиеся системы - это обычно очень сложные открытые системы, которые характеризуются огромным числом степеней свободы.[9] Однако далеко не все степени свободы системы одинаково важны для ее функционирования. С течением времени в системе выделяется небольшое количество ведущих, определяющих степеней свободы, к которым «подстраиваются» остальные. Такие основные степени свободы системы получили название аттракторов. Аттракторы характеризуют те направления, в которых способна эволюционировать открытая нелинейная среда. Иначе говоря, аттракторы - это те структуры, по направлению к которым протекают процессы самоорганизации в нелинейных средах. Для наглядной иллюстрации понятия аттрактора часто используют образ конуса «воронки», который втягивает в себя траектории эволюции нелинейной системы.
В процессе самоорганизации возникает множество новых свойств и состояний. Очень важно, что обычно соотношения, связывающие аттракторы, намного проще, чем математические модели, детально описывающие всю новую систему. Это связано с тем, что аттракторы отражают содержание оснований неравновесной системы. Поэтому задача определения аттракторов - одна из важнейших при конкретном моделировании самоорганизующихся систем.
Становление самоорганизации во многом определяется характером взаимодействия случайных и необходимых факторов системы и ее среды. Система самоорганизуется не гладко и просто, не неизбежно. Самоорганизация переживает и переломные моменты - точки бифуркации. Вблизи точек бифуркаций в системах наблюдаются значительные флуктуации, роль случайных факторов резко возрастает.
В переломный момент самоорганизации принципиально неизвестно, в каком направлении будет происходить дальнейшее развитие: станет ли состояние системы хаотическим или она перейдет на новый, более высокий уровень упорядоченности и организации. В точке бифуркации система как бы колеблется перед выбором того или иного пути организации, пути развития. В таком состоянии небольшая флуктуация может послужить началом эволюции системы в некотором определенном направлении, одновременно отсекая при этом возможности развития в других направлениях.
Переход от Хаоса к Порядку вполне поддается математическому моделированию.[10] Более того, в природе существует не так уж много универсальных моделей такого перехода. Качественные переходы в самых разных сферах действительности подчиняются подчас одному и тому же математическому сценарию.
Синергетика убедительно показывает, что даже в неорганической природе существуют классы систем, способных к самоорганизации. История развития природы это история образования все более и более сложных нелинейных систем. Такие системы и обеспечивают всеобщую эволюцию природы на всех уровнях ее организации - от низших и простейших к высшим и сложнейшим.[11]
Те практические задачи, которые сегодня решаются, требуют глубокого изучения отдельных объектов и явлений природы. Большое число задач связано с исследованием сложных систем, таких, которые включают множество элементов, каждый из которых представляет собой достаточно сложную систему, и эти системы тесно взаимосвязаны с внешней средой. Изучение таких систем в естественных условиях ограничено их сложностью, а иногда бывает невозможным ввиду того, что нельзя провести натурный эксперимент или повторить тот или иной эксперимент. В этих условиях порой единственным возможным методом исследования является моделирование. Без модели нет познания. Любая гипотеза - это модель. И правильность гипотезы о будущем состоянии объекта зависит от того, насколько правильно определили параметры исследуемого объекта и их взаимосвязи между собой и внешней средой. Однако научное описание никогда не охватывает всех деталей, оно всегда выделяет существенные элементы структур и связей. Поэтому такое описание содержит обобщенную модель явлений. В настоящее время термин "общая теория систем" по предложению Л.Берталанфи трактуется в широком и узком смысле. Общая теория систем, понимаемая в широком смысле, охватывает комплекс математических и инженерных дисциплин, начиная с кибернетики и кончая инженерной психологией. Более узкое толкование термина связано с выбором класса математических моделей для описания систем и уровня их абстрактного описания.[12]
Аналогичная ситуация складывается и с теорией развития сложных систем. Ее также можно понимать в широком и узком смысле. В широком смысле теория развития сложных систем - это естественнонаучная конкретизация общей теории развития - материалистической диалектики. В рамках этой же теории должны быть объединены основные положения о поведении сложных систем, разработанные в различных областях научного знания, в результате чего может быть построена концептуальная модель процессов развития сложных систем различной природы. Более узкое понимание теории развития предполагает построение математических моделей развития конкретных систем. В этом случае объект исследования выделяется и анализируется конкретной научной дисциплиной.