Поочередная репликация цепей. Репликация ДНК аденовируса происходит без синтеза отстающей цепи и поэтому без образования множественных сайтов инициации и фрагментов Оказаки. Вместо этого цепи линейного дуплексного генома реплицируются попеременно. Сначала через образование белкового праймера происходит инициация одной цепи, которая непрерывно удлиняется вплоть до завершения репликации. Вытесненная новосинтезированной цепью, вторая цепь дуплекса служит матрицей при синтезе таким же способом следующего дуплекса. С какого конца родительского дуплекса начнется процесс, по-видимому, неважно. Репликация ДНК аденовируса необычна в двух отношениях:
1) использование белка для запуска синтеза цепи ДНК с конца линейного дуплекса;
2) отсутствие прерывистой репликации, опосредуемой РНК-транскриптами.
Терминация и расхождение в кольцевых геномах. Замкнутость структуры многих геномных ДНК упрощает завершение репликации всей нуклеотидной последовательности. Непрерывный рост лидирующей и отстающей цепей вдоль кольцевой матрицы неизбежно приводит к совмещению 3'-гидрокси - и 5'-фосфорильного концов одной цепи либо в точке начала репликации, либо - при двунаправленной репликации - в середине кольца. Кольца в этих местах встречи соединяются ДНК-лигазой, при этом обычно они оказываются попарно сцепленными, и в дальнейшем должно произойти их разъединение на отдельные геномы. Это происходит с помощью топоизомеразы типа II.
Терминация и завершение репликации в линейных ДНК. За исключением репликации аденовирусной ДНК, где синтез новых цепей ДНК инициируется белковым праймером и матричная цепь копируется полностью, во всех других случаях для репликации необходим РНК-праймер, что создает особые проблемы при завершении репликации линейной дуплексной ДНК. Дело в том, что после инициации синтеза новой цепи и последующего удаления РНК-праймера новосинтезированная цепь содержит пробел на 5'-конце. Поскольку никаких способов удлинения 5'-концов цепей ДНК не существует, необходимы какие-то иные методы завершения репликации.
Были предложены два способа, с помощью которых процесс репликации мог бы завершаться. Один из них предполагает, что существуют цепи ДНК с прямыми повторами на концах. После репликации два комплементарных конца обоих незавершенных дуплексов могут спариться и образовать линейные конкатемеры с одноцепочечными разрывами. Остающиеся пробелы могут быть заполнены путем удлинения цепей в направлении 3'->5' с последующим соединением их ДНК-лигазой либо путем прямого соединения стыкующихся концов с помощью ДНК-лигазы с образованием конкатемеров. После надрезания конкатемера специфической эндонуклеазой образуются выступающие 5'-концы, и ДНК-полимераза может наращивать более короткие цепи с 3'-конца. Другой способ предполагает наличие на конце каждой цепи ДНК коротких инвертированных повторов, благодаря которым образуются небольшие петли.3'-конец петли служит праймером для копирования нереплицированного участка. Благодаря специфическому разрыву в начале инвертированного повтора получается структура, которую можно достроить с 3-конца до восстановления исходной двухцепочечной концевой последовательности.
Недавно полученные данные свидетельствуют о том, что концевые области эукариотических хромосом - теломеры - реплицируются с помощью особого механизма, отличного от представленных выше. Концы хромосом дрожжей, беспозвоночных, растений и позвоночных имеют сходное, весьма необычное строение: они содержат шпилькообразные структуры, в которых 3' - и 5'-концы дуплекса ДНК оказываются рядом, и много коротких тандемных повторов. Около петли в одной из цепей в области повторов имеются множественные одноцепочечные разрывы. Вопрос о том, как подобная структурная организация может способствовать репликации концов дуплексных участков, выясняется. Если учесть сходство структурных особенностей конечных областей хромосом, то можно предположить, что механизм репликации всех эукариотических хромосом одинаков.
Геном ретровирусов представлен единственной молекулой одноцепочечной РНК. После проникновения РНК в клетку хозяина вирусный геном подвергается обратной транскрипции, при этом сначала образуется дуплекс РНК-ДНК, а затем двухцепочечная ДНК. Эти этапы предшествуют экспрессии вирусных генов на уровне белков и образованию РНК-геномов.
Фермент, катализирующий комплементарное копирование РНК с образованием ДНК, называется обратной транскриптазой. Он содержится в ретровирусных частицах и активируется после попадания вируса в клетку и разрушения его липидно-гликопротеиновой оболочки. Вполне вероятно, что обратной транскрипции способствуют какие-то вспомогательные белки, находящиеся внутри вирионов, поскольку в присутствии последних ферментативная реакция протекает гораздо эффективнее и быстрее, чем в присутствии очищенного фермента. Появляется все больше данных о том, что обратная транскрипция происходит в самых разных эукариотических клетках, а обратная транскриптаза играет важную роль в процессах перестройки генома
Обратные транскриптазы ретровирусов по существу являются ДНК-полимеразами, и invitro могут использовать в качестве матрицы ДНК. Однако гораздо эффективнее они работают, если матрицей является РНК. Как и все ДНК-полимеразы, обратные транскриптазы не способны инициировать синтез новых цепей ДНК. Но если синтез уже инициирован с помощью праймерной РНК или 3'-концево-го участка ДНК, то фермент эффективно осуществляет синтез, используя цепь ДНК как матрицу.
Ретровирусы - это диплоидные организмы, поскольку каждый вирион содержит две идентичные цепи РНК размером от 8000 до 10000 нуклеотидов. Цепи соединены вблизи своих 5'-концов, однако природа этого нековалентного взаимодействия неизвестна. Области 5' - и 3'-концов обеих цепей модифицированы, как и у всех эукариотических мРНК. Рассматривая механизм обратной транскрипции, необходимо отметить наличие пяти структурных элементов у вирусной РНК:
1) прямые повторы на 5' - и 3'-концах РНК;
2) последовательность из 80-120 нуклеотидов, соседствующая с 5'-концевым повтором;
3) последовательность из 170-1200 нуклеотидов, соседствующая с 3'-конце-вым повтором;
4) последовательность из 15-20 нуклеотидов, в пределах которой клеточная тРНК спаривается с ретровирусной РНК, что создает праймер для синтеза первой цепи ДНК;
5) сегмент Ри, находящийся непосредственно перед повтором U3 и являющийся сайтом для праймирования второй цепи ДНК; такой сегмент одинаков у РНК всех ретровирусов определенного типа.
Известны три продукта, образующиеся в результате обратной транскрипции: форма А - линейный дуплекс ДНК с последовательностью U3RU5, имеющийся на обоих концах дуплекса; два кольцевых дуплекса ДНК, производных формы А; форма В с LTR-повторами на обоих концах и форма С только с одним LTR. Объяснить образование структур А, В и С при обратной транскрипции вирусной ДНК весьма непросто. Процесс начинается с наращивания тРНК-праймера на матрицах U5 и R в направлении 3' - >5'. Затем РНКаза Н, специфичная к РНК в составе гибридного РНК-ДНК-дуплекса, расщепляет сегмент РНК этого дуплекса. Поскольку на 3'-конце РНК имеется повтор R, новосинтезированная короткая цепь ДНК "перепрыгивает" на этот конец молекулы мРНК и спаривается там с комплементарным ей участком. Далее происходит удлинение цепи ДНК с использованием в качестве матрицы остальной части мРНК. К моменту завершения синтеза первой цепи ДНК большая часть вирусной ДНК разрушается РНКазой Н. Затем в предполагаемом сайте связывания праймера вблизи повтора U3 инициируется синтез второй цепи ДНК с использованием новосинтезированной первой цепи в качестве матрицы. Праймером для синтеза второй цепи может быть РНК, однако как идет синтез второй цепи - непрерывно или прерывисто - неизвестно. После репликации тРНК-связывающей последовательности на 5'-конце первой цепи ДНК тРНК, по-видимому, удаляется. Затем новосинтезированная вторая цепь ДНК спаривается с тРНК-связывающей последовательностью первой цепи. После удлинения 3'-концов каждой цепи завершается образование дуплекса ДНК. Обратите внимание, что на каждом конце ДНК-дуплекса имеется прямой повтор последовательности U3RU5 - LTR. Кольцевые ДНК, по-видимому, образуются либо путем лигирования концов линейной ДНК, либо путем гомологичной рекомбинации между сегментами LTR. Удивительно, что такая сложная последовательность реакций протекает без явного участия ферментов репликации клетки-хозяина. Репликация двухцепочечной формы ретровирусной ДНК не начинается до тех пор, пока она не встроится в клеточную ДНК. Субстратом для такого интеграционного события является продукт обратной транскрипции - линейная дуплексная ДНК. Механизм рекомбинационного встраивания пока полностью не установлен. В результате интеграции образуется структура. При интеграции на обоих концах интегрированной вирусной ДНК утрачивается по нескольку нуклеотидов в пределах LTR-последовательностей и происходит дупликация 3-10 нуклеотидов клеточной ДНК. После интеграции ретровирусная ДНК реплицируется как часть клеточной ДНК. РНК дочерних вирионов образуется в результате транскрипции интегрированных копий вирусной ДНК. Инициация синтеза РНК происходит в крайних левых точках стыковки U3R, а терминация-в крайних правых точках стыковки RU5.
Геном вируса гепатита В человека представлен кольцевой двухцепочечной ДНК с пробелами. Если вирус находится внутри клетки, то пробелы заполняются вирионной ДНК-полимеразой. Такая почти полноразмерная цепь ДНК играет роль матрицы, на которой синтезируется РНК. Длина этой РНК равна длине генома вируса, и она играет роль мРНК в процессе экспрессии вирусных белков и роль матрицы при обратной транскрипции с образованием дочерней вирусной ДНК. Аналогичный механизм реализуется и при репликации вируса мозаики цветной капусты и других вирусов растений.