Ряд структур головного мозга оказывает нисходящее влияние на тормозные нейроны желатинозного вещества, участвуя в воротном контроле болевой чувствительности на спинальном уровне. К ним относятся центральное серое вещество (бабочка), ядра шва, голубоватое пятно среднего мозга, латеральное ретикулярное ядро и ядра гипоталамуса. Соматосенсорная область коры объединяет и контролирует деятельность антиноцицептивных структур различного уровня. Нарушение этой интегрирующей функции вызывает нестерпимую боль. Важнейшую роль в механизмах противоболевой функции ЦНС играет эндогенная опеантная система, т.е. рецепторы, реагирующие на опий, морфий и др. обезболивающие препараты.
Влияние генотипа и среды на развитие нейрофизиологических процессов в онтогенезе.
Важные исследования для решения этой проблемы были проведены Е.В. Уваровой (1987) с помощью регистрации ЭЭГ у моно- и дизиготных близнецов. ЭЭГ регистрировали в состоянии покоя (полулежа в удобном кресле) и при действии раздражителей (фонофотостимулятор). Анализировали следующие характеристики ЭЭГ: в фоне - среднюю частоту, амплитуду, индекс и интенсивность основных ритмов в передних и задних областях мозга на внешнюю стимуляцию.
Каждую пару близнецов обследовали 4 раза на протяжении 9-12 лет. Для фоновых характеристик ЭЭГ выявлено изменение с возрастом числа показателей, имеющих относительно высокую степень генетической детерминации.
Вклад генотипа в изменчивость показателей ЭЭГ фона отличается в разные периоды детей и подростков. Он довольно существен в возрасте 4-9 лет (примерно 40% всех показателей). Максимум влияния генетических факторов приходится на возрастной период 13-15 лет. В предшествующий препубертатный период (10-12 лет) число таких параметров существенно меньше, что позволяет предполагать значительную роль средовых факторов в разнообразии индивидуальных характеристик ЭЭГ покоя в данном возрасте. Усиление влияния факторов среды отмечается также в старшем возрасте (16-21 год), особенно в 19-21 год. Изменение числа параметров в интервале 13-15 лет и 19-21 год статистически значимо.
Вклад генотипа в изменчивость показателей задних областей мозга больше, чем передних. Это, вероятно, объясняется их различием в филогенетическом и онтогенетическом развитии.
Влияние средовых факторов в формировании изменчивости показателей ЭЭГ-реактивности в онтогенезе значительно более выражено, чем в детерминации параметров ЭЭГ покоя.
Для показателей реакции усвоения ритма максимум влияния генетических факторов выявлен в возрасте 10-12 лет, несколько меньший - в 16-18 лет. В остальные возрастные периоды обнаружена роль средовых влияний, особенно значительная в 406 и 13-15 лет, несколько меньшая - в 7-9 лет.
Для показателей вегетативных функций существуют свои особенности соотношения генотипа и среды в онтогенезе. Наиболее значительный вклад наследственных факторов в разнообразии параметров "вегетативного фона" выявлен возрасте 19-21 года, в котором 60% показателей (частота пульса и КГР, амплитуда КГР) имеют относительно высокую величину коэффициента генетической детерминации.
Наиболее существенное влияние среды в изменчивости этих показателей обнаружено в период 7-9 и 13-15 лет. Следует отметить, что генетически наиболее "устойчивыми" среди них являются значения частоты пульса (в большинстве возрастных периодов наименее "устойчивы" характеристики дыхания).
При изучении соотношения наследственных и средовых характеристик в вариабельности компонентов вегетативной реактивности установлено, что в формировании их в ходе онтогенеза влияние средовых факторов значительно более выражено, чем генетических. Влияние генотипа на изменчивость этих показателей в онтогенезе наиболее заметно в возрасте 16-18 лет.
Роль генома в пластических изменениях нервной ткани может проявляться в различных вариантах. Доказана генетическая детерминированность силы возбудительного процесса, где генотип материнского организма определяет подвижность нервных процессов. Наследуется такое фундаментальное свойство нервной системы, как возбудимость. У видов, пород и рас животных, имеющих высокую нервно-мышечную возбудимость, наблюдается и более высокая пищевая возбудимость и более высокие показатели силы возбуждения. По наследству может передаваться повышенная способность к тому или иному виду обучения (например, в опытах на крысах - это преодоление лабиринта).
Возможно множественное влияние одного и того же гена, например, в контроле порога возбудимости нервной системы, содержания нейроактивных соединений и способности к обучению (образованию оборонительных условных рефлексов).
Могут наблюдаться анатомические изменения мозга. Так, у крыс с высоким уровнем условно-рефлекторной деятельности обнаружена большая ширина сенсомоторной области коры, большие размеры зубчатой фасции, мозолистого тела с большим числом миелинизированных волокон. Генетически детерминированные структурные особенности захватывают и лимбическую систему мозга, поэтому у хорошо обучающихся крыс по сравнению с животными с низким уровнем возбудимости и скорости образования условных рефлексов происходит увеличение: а) ширины лимбической коры; б) размера клеток ядер гипоталамуса и амигдалы; в) числа глиальных клеток свода.
Реализация генетической информации, закодированной в молекуле ДНК и ядре нервной клетки, осуществляется при непосредственном участии химических факторов самой цитоплазмы клетки. Помимо широко известных первичных химических посредников-нейромедиаторов, с помощью которых информация передается к нервной клетке и активирует ее в соответствии с присущей ей собственной генетической программой, в настоящее время в самостоятельную категорию метаболических факторов выделены вторичные посредники. В первую очередь к ним относят циклический аденазинмонофосфат (цАМФ), выполняющий функцию универсального клеточного регулятора.
Ионы кальция также относят к категории вторичных посредников, от которых зависят как пресинаптические, так и постсинаптические процессы клетки и формирование ее электрической активности. Вслед за открытием рецептора кальция, т.е. белка кальмодулина, было установлено, что он регулирует синтез и распад цАМФ. Важную роль в этом процессе играют стероидные гормоны, которые реализуют свои эффекты, минуя систему вторичных посредников. В отличие от пептидных гормонов стероидные гормоны уже имеют собственные возможности проникновения в нервную клетку, где они связываются непосредственно с ее ядром.
Эмоции возникли в процессе эволюции человека и животных. Им принадлежит важная роль в формировании поведенческих реакций, стремлений и удовлетворении потребностей организма.
Эмоции - это особая форма психической деятельности, которая в виде непосредственного переживания отражает не объективные явления, а субъективное к ним отношение. Особенность эмоций состоит в том, что они непосредственно отражают значимость действующих на индивид объектов и ситуаций, степень их соответствия потребностям субъекта. Эмоции выполняют функцию связи между действительностью и потребностями. Слово "эмоции" стали употреблять в XVII в. говоря о чувствах в отличие от мыслей. И.М. Сеченов называл эмоции рефлексами с усиленным концом в их последней трети. И.П. Павлов считал, что эмоции возникают при переделке динамического стереотипа. Взгляды Павлова на механизмы возникновения эмоций получили дальнейшее развитие в биологической теории эмоций Анохина и информационной теории эмоций Симонова. Согласно информационной теории эмоций положительные эмоции возникают в ситуации избытка имеющейся информации по сравнению с необходимым и ранее существующим прогнозом, или при возрастании вероятности достижения цели. Отрицательные эмоции возникают в противоположной ситуации.
Биологическая теория эмоций Анохина утверждает, что отрицательные эмоции возникают всегда когда система (организм) не может достичь полезного для себя приспособительного результата; а положительные - в случае достижения такого полезного результата. В основе этой теории лежит представление о функциональной системе.
Функциональная система - это единица интегративной деятельности всего организма. Она осуществляет избирательное вовлечение и объединение структур и процессов в выполнении какого-либо четко обозначенного акта поведения или функции организма, т.е. это динамическая организация, в которой взаимодействие всех составляющих ее частей направлено на получение определенного и полезного для организма приспособительного результата.
Структура функциональной системы сложна и включает в себя афферентный синтез, принятие решения, акцептор результатов действия, эфферентный синтез (или программу действия), формирование самого действия и оценку достигнутого результата. Системообразующим фактором, определяющим начало функционирования системы, является потребность или мотивация. Процессы афферентного синтеза, охватывающие мотивационное возбуждение, пусковую и обстановочную афферентацию, аппарат памяти, реализуются с помощью специального механизма, обеспечивающего необходимый для этого тонус коры больших полушарий и других структур мозга. Этот механизм регулирует и распределяет активирующее и инактивирующее влияния, исходящие из лимбической и ретикулярной систем мозга.
Поведенческим выражением активации в ЦНС, создаваемой этим механизмом, являются ориентировочные исследовательские реакции и поисковая активность человека. Завершение стадии афферентного синтеза сопровождается переходом в стадию принятия решения, в котором определяется тип и направленность поведения. Принятие решения реализуется через специальный поведенческий акт - формирование аппарата акцептора результатов действия. Это аппарат, программирующий результаты будущих событий. В нем актуализирована врожденная и индивидуальная память животного и человека в отношении свойств внешних объектов, способных удовлетворить возникшую потребность, а также способов действия, направленных на достижение или избегание целевого объекта.