Смекни!
smekni.com

Свободные аминокислоты нервной системы (стр. 6 из 6)

Декарбоксилирование ДОФА до дофамина выполняется ДОФА-декарбоксилазой, которая требует в качестве кофактора пиридоксальфосфат. В мозге энзим неспецифичен, действует на широкий спектр ароматических аминокислот, включая 5-гидрокситригттофан.

Дофамин-р-гидроксилаза, необходимая для его превращения в норадреналин, также присутствует в мозге. Показана необходимость молекулярного кислорода и аскорбиновой кислоты для его действия. Энзим содержит ионы меди и стимулируется фумаровой кислотой. Он неспецифичен и катализирует гидроксилирование боковых цепей большого количества р-фенилэтиламинпроизводных; в частности, тирамин является лучшим субстратом для энзима, чем дофамин.

Основной путь деградации тирозина в организме млекопитающих - через р-гидроксифенилпируват, гомогентизиновую кислоту и расщепление кольца - не встречается в головном мозге. В мозге присутствует Ь-тирозин-2-оксоглутаратами-нотрансфераза, которая осуществляет активное переаминирование тирозина в нейрональной ткани. Тирозин мозга является также субстратом для неспецифической декарбокси-лазы ароматических аминокислот.

Хотя известен ряд нарушений во всех путях деградации тирозина, ни один из них не вызывает тяжелых неврологических повреждений.

Гистидин не синтезируется в головном мозге, но он активно транспортируется через гематоэнцефалический барьер. В мозге гистидин может декарбоксилироваться, образуя гистамин - важный нейромедиатор и нейромодулятор. Декарбоксилирование гистидина могут выполнять два энзима. Первый из них - специфическая гистидин-декарбоксилаза, энзим, требующий пиридоксальфосфат в качестве кофактора. Он очень активен в ряде периферических нервов и в симпатических ганглиях. В то же время в головном и спинном мозге активность его мала; К^ для гистидина в нормальных условиях - порядка 410~ М. Фермент индуцируется при стрессе.

Вторым энзимом, который осуществляет декарбоксилирование гистидина, является неспецифическая декарбоксилаза ароматических аминокислот, действующая на ДОФА, 5-гидрокситриптофан, а также на гистидин. Представлено большое количество доказательств, что именно этот энзим является ответственным за декарбоксилирование гистидина в ЦНС.

Разрушение гистамина в целом организме происходит в основном при участии гистаминазы, но этот фермент отсутствует в мозге. Главный путь катаболизма гистамина в мозге - метилирование в 4-м положении с использованием S-аденозилметионина в качестве донора метальной группы при участии специфического энзима гистамин-метилтрансферазы. При подавлении этого энзима уровень гистамина в мозге сильно возрастает. Образованный метилгистамин затем окисляется до соответствующего альдегида и до метилимидазо-луксусной кислоты, которая экскретируется.

Концентрация гистамина в головном и спинном мозге низка, но он присутствует в значительных количествах в некоторых постганглионарных нервах. Его концентрация велика в переднем гипофизе и гипоталамусе. Субклеточно гистамин локализован преимущественно в синаптосомах.

10. Основные аминокислоты

Лизин пока мало исследован в аспекте его значения для нервной системы. Пути деградации лизина в мозге точно не установлены, но они отличаются от локализованных в печени. Лизин в мозге может катаболировать через образование пипеколовой кислоты.

Интересно и важно, что нервная система исключительно чувствительна к нарушению метаболизма лизина в других тканях. Последнее приводит к тяжелым деструктивным и демиелинизационным процессам в ЦНС, сопровождающимся умственной отсталостью.

Аргинин в целом организме ассоциируется прежде всего с процессом синтеза мочевины. Однако в головном мозге не существует полного цикла образования мочевины, хотя некоторые энзимы этого метаболического пути, такие как аргинино-сукцинатсинтетаза, аргининосукдиназа и аргиназа, найдены в этом органе. Центральный фермент цикла - орнитинкарбамоилтрансфераза - не обнаружена в мозге.

Недавно выявлена еще одна важная функция аргинина. Он является источником образования окиси азота - мощного сосудорасширяющего фактора и нейромедиатора. Синтез N0 осуществляется с помощью фермента аргинат-синтазы. Образующийся при этом цитруллин включается в известный цикл образования мочевины.

Генетические дефекты, связанные с метаболизмом аргинина и образованием мочевины вне нервной ткани, сопровождаются неврологическими последствиями. Все эти генетические заболевания, такие как цитруллинемия, аргининосукцинатацидурия, аргининемия, сопровождаются накоплением в плазме крови и в тканях отдельных метаболитов аргинина. Но, вероятно, наиболее серьезным последствием таких метаболических блоков является сопутствующее им повышение концентрации ионов аммония - гипераммониемия, особенно опасная для растущего мозга и часто ведущая к коме. При аргининосукцинатацидурии умственная отсталость может быть очень тяжелой. Это заболевание сопровождается дегенеративными изменениями в белом веществе мозга, дефектами миелинизации и недоразвитием кортикальных слоев.

Метаболизм орнитина - диаминокислоты, являющейся ближайшим родственником аргинина, в нервной ткани открывает еще одну важную функцию аминокислот - они являются предшественниками полиаминов, соединений, которые выполняют пока мало изученный комплекс регуляторных функций.

Выводы

1. Аминокислоты широко используются для синтеза многих белков, пептидов, нейромедиаторов и других биологически важных соединений. Некоторые аминокислоты сами служат нейромедиаторами.

2. Состав пула свободных аминокислот в нормальных физиологических условиях отличается постоянством, отдельные районы мозга имеют свои характерные метаболические пулы.

3. Разнообразные активные транспортные процессы служат для поддержания уровней и распределения метаболитов как в целом органе, так и в отдельных его районах. Многообразие систем транспорта аминокислот ЦНС отражает полифункциональность этих соединений.

4. Пространственная разобщенность отдельных ступеней метаболизма аминокислот создает условия ддя пространственного разобщения энергетического метаболизма и не связанных с энергетикой функций и превращений аминокислот.

5. Головной мозг характеризуется высокой концентрацией аминокислот глутаминовой группы. Глутаминовая кислота, глутамин, ГАМК, аспарагиновая и N-ацетиласпарагиновая кислоты составляют в сумме 75% пула свободных аминокислот мозга.

6. Метаболизм аминокислот глутаминовой группы также чрезвычайно интенсивен. Эти аминокислоты выполняют ряд важных функций в ЦНС: энергетическую, служат для образования и устранения аммиака, выполняют роль нейромедиаторов и нейромодуляторов.

7. Ароматические аминокислоты имеют особое значение как предшественники катехоламинов и серотонина.

8. Нарушения, особенно генетические, в энзиматической системе метаболизма аминокислот часто имеют тяжелые неврологические последствия. Нарушение транспорта аминокислот в других органах часто также сопровождается неврологическими расстройствами.