Смекни!
smekni.com

Старение (стр. 3 из 4)

· изменение и потеря информации в системе (развертывание программ роста и развития; "мутации" материальных носителей информации - ДНК, белков и иерархически других структурных уровней материальных носителей информации; спонтанный распад информации - производство энтропии и т.п.).

Процесс утраты информации аналогичен ее изменению - "мутациям", причем он носит вероятностный характер и, по существу, сводится или к ошибкам в ходе процесса воспроизводства информации в ходе самокопирования материальных носителей информации, или к спотанному вероятностному "мутированию" невоспроизводящейся информации (например, повреждения свободными радикалами неделящейся ДНК и т.п.). Заметим, что во многих случаях "мутировавшая" информация способна к воспроизводству (например, большинство мутаций клеток не приводят к прекращению их деления) и часто сохраняется возможность функционирования воспроизводящихся на ее основе структур, которые, таким образом, вступают в конкуренцию с имеющимися ранее структурами организма.

Соответственно, "мутировавшая" информация может также воспроизводиться сама, пополняться за счет мутаций неизменившейся информации и рассеиваться (обратная мутация в исходную форму крайне мало вероятна и очень мала): dIm/dt = k4 Im + k2 Im - k5 Im

Для того, чтобы учесть требуемое сохранение постоянства вещества, энергии и информации после прекращения развития у взрослого организма, введем в формулы ограничение количества информации (I+Im=const), получив известную из кибернетики формулу самовоспроизводящейся системы с обратными положительными и отрицательными связями: dI/dt = k1 I / k4 (I + Im) - k2 Im - k3 I; dIm/dt = k5 Im / k4 (I + Im) + k2 Im - k6Im

Численная модель рассеивания начальной информации в стабилизировавшейся системе представлена на рисунке 5.

При анализе модели учтено, что мутировавшие клетки обычно менее жизнеспособны и, кроме того, подвергаются иммунному надзору и гибнут поэтому быстрее, а также по тем же причинам с меньшей скоростью самообновляются. Соответственно коэффициенты для модели подобраны в случае графика: k1=0,3, k5=0,2, k4=0,1, k2=0,03, k3=0,05, k6=0,07.

На модели можно видеть, что со временем соотношение мутантных и неизмененных единиц информации стабилизируется, но в течение некоторого периода будет иметь место нарастание числа мутаци, что будет вести к нарастанию смертности. Вид кривой смертности, однако, не экспоненциальный, а линейный, а логарифма смертности – выпуклый, что значительно отличается от реальной картины. Это не удивительно, так как время установления равновесия I и Im невелико – фактически, например, время клеточного деления для клеток слизистой и кожи – дни и часы, поэтому на фоне многих лет жизни напрямую этот механизм вряд ли вносит существенный вклад в процесс старения. Накопление мутаций скорее отражает другие процессы – резкое (регуляторное) снижение скорости клеточного самообновления и снижение эффективности иммунного надзора с возрастом. Мутации важны и в случае повышения с возрастом риска возникновения опухолей, что вносит значительный вклад в причины смертности для млекопитающих вообще и человека в особенности.

Так как мутации возможны самые разнообразные, то фактически за счет этого же механизма мы имеем и второе характерное для старения следствие: увеличение разнообразия исходно однородных структур. Увеличение разнообразия структур - появление большого количества "чужой" информации. Она перегружает системы организма, ответственные за распознавание и удаление ее, причем, т.к. фактически, новые структуры лишь немного отличаются от старых и сохраняют во многих случаях практически на прежнем уровне функциональную способность и, соответственно, реальную ценность для организма, то чрезмерная реакция против "чужого" даже вредна.

Кроме того, так как информация контролирует потоки вещества и энергии, входящие в систему и выходящие из нее, то изменение балланса I/Im фактически означает снижение возможности отбора "нужной" вещественной и энергетической основы для строительства своей структуры и снижение распознавания и вывода "чужого" вещества и энергии – то есть, отражает известный механизм старения - "накопления шлаков": ( d(I/Im)/dt = d(p2,w2/P1,W1)/dt ).

Полные математические выкладки для иллюстрации выше сказанного достаточно трудоемки, однако, не трудно видеть, что в общем виде оба процесса старения, как впрочем и уже описанные выше, это только частные проявления процесса нарастания энтропии, рассматриваемые с различных "точек зрения" - с точки зрения различных свойств живого вещества, живых систем. Действительно, и спонтанная потеря жизнеспособности в целом, и регуляторное снижение самообновления, и снижение структурной однородности и "загрязнение" организма не выведшимися и отложившимися "балластом" веществами - все это в глобальном плане есть отражение действия единственной причины - дискретности организма, действия законов термодинамики на частично открытую систему, не способную, после окончания развития, к эффективной дальнейшей эволюции. Заметим, при этом, что старение не есть "выработавшийся в эволюции феномен", нужной для исключения неэффективных форм жизни и смены новыми, старение отражает более глобальные закономерности Бытия вообще.

Биохимические и термодинамические модели старения

Этот уровень рассмотрения позволяет понять, что стоит за "жизнеспособностью", приписываемой не только всему организму, но и каждому его элементу. Действительно, "старой" является каждая часть старого организма, но тогда возникает вопрос - какая характеристика, общая для самых разнообразных структурных элементов организма, может отражать эту жизнеспособность и величину, ей обратную - уровень старения, для самих молекул и их комплексов, химических реакций и т.п.

С точки зрения биохимии и теорий сложных систем на такую характеристику претендуют две (тесно взаимосвязанных) общие характеристики, применяемые в химии, биохимии и вообще теории сложных систем: это энтропия и информация. При этом энтропия (S) может быть прямо определена через информацию, которая, в свою очередь, тесно связана с вероятностью события:

S = A LnW + B,

где А и В - коэффициенты, а W - вероятность события.

Уже из этого видно, что максимум энтропии соответствует максимально вероятному состоянию, поэтому жизнь с точки зрения термодинамики определяют как степень отклонения от максимально вероятного состояния - от равновесия; как "неравновесный поток", как отклонение от состояния равновесия.

Соответственно, можно теперь представить уровень жизнеспособности как степень отклонения от состояния равновесия.

Очевидным при таком рассмотрении является и то, что для поддержания жизнеспособности в любой части любой живой системы необходима постоянная затрата энергии, так как для живых систем характерно снижение энтропии, а согласно второму закону термодинамики это возможно только при постоянном поступлении энергии извне.

Таким образом, по степени потребления энергии организмом можно судить о степени его жизнеспособности.

На практике используют оценку общего обмена для целого организма, скорость потребления кислорода тканями, уровень потребления кислорода при нагрузке ("коэффициент полезного действия" и мощность живых процессов), а также максимально возможное потребление кислорода и/или мощность внешнего развиваемого усилия - объем адаптации организма. Предлагаются также и некоторые иные подходы. Например, связь энтропии с теплосодержанием позволяет, в принципе, по микро-калориметрии нативной и денатурированной ДНК говорить в энергетическом эквиваленте о том, какая энергия и, соответственно, энтропия, соответствует "живому" и "неживому" состоянию даже для отдельной молекулы. Однако, интерпретации такого рода с привлечением физических эквивалентов живого, достаточно трудны.

Для целостного организма эффективными, видимо, являются подходы оценки энтропии с точки зрения информации, а также ее гармоничности для целого единого организма. Исходят из представлений об оптимальности взаимосвязей различных регуляторных систем: в каждый момент времени возможно оптимальное гармоничное состояние, обеспечивающее максимальную жизнеспособность, максимальную адаптацию и т.п. Исходя из кросс-корреляций между различными системами (сердечно-сосудистой, дыхательной, эндокринной и пр.) можно выразить в безразмерных числах такие коэффициенты взаимодействия и придать им значимость информационного содержания, а также выразить это в понятиях энтропии.

Развернутые исследования в этом направлении, однако, отсутствуют, что затрудняет практическую реализацию и интерпретацию таких подходов. Несомненно, однако, что именно энтропия является важнейшим показателем старения и способы, позволяющие вычислять ее для целостного организма должны открыть принципиально новые возможности для анализа в биологии старения и для выяснения первичных, сущностных, механизмов и первопричины старения.

Для практических целей важно рассмотреть возможности влияния на информационно-энтропийные процессы в целом, что позволило бы влиять и на сущностный механизм старения. Для разных уровней организации, очевидно, существуют разные возможности. Так, для целостного организма это уже обсуждалось в связи с регуляторными моделями старения. Возможности здесь сводятся к:

а) влиянию на процессы роста, развития и самообновления клеток (эндокринные влияния, нервные влияния и гуморальные влияния),

б) гармонизацию имеющихся процессов (акупунктура, физическая и психологическая тренировка и т.п.),

в) социально-общественные мероприятия как "здоровый образ жизни".

Особый интерес представляет та возможность влияния непосредственно на химические процессы, используя термодинамические подходы. Вообще говоря, химическая смесь реально подвержена огромному числу реакций, идущих в самых разных направлениях. Жизнеспособность здесь эквивалентна выделению из химического "шума" биохимически значимой информации - возникновения направленности биохимических потоков. Наиболее интересным здесь является рассмотрение ферментного механизма. С точки зрения биохимии и термодинамики жизнеспособность можно характеризовать как отношение скоростей ферментозависимых реакций "жизни" - информационно ценных биохомических процессов, к неферментным реакциям "шума" - энтропии. Важно, что такие процессы в целом зависят от внешних факторов - температуры, рН, окислительно-восстановительного потенциала, давления газов и пр. Интересно, что все перечисленное предлагается с успехом для биостимуляции и борьбы со старением: