Смекни!
smekni.com

Элементарные частицы в космических лучах (стр. 3 из 4)

Эта взаимосвязь вырастает в необходимую основу развития и современной космологии. Первоначально развитие теории расширяющейся Вселенной проходило относительно самостоятельно. Открытие в 1965 г. теплового фона электромагнитного излучения подтвердило выдвинутую Г. Гамовым так называемую горячую модель расширяющейся Вселенной. Современная температура излучения (~3 К) мала, мала и его плотность энергии в сравнении с плотностью энергии покоя атомов, но, обращая в прошлое известный закон расширения, мы приходим к картине не только плотного, но и горячего состояния вещества с доминирующей плотностью энергии излучения.

Простые оценки показывают, что вещество и излучение находились в ранней Вселенной в термодинамическом равновесии. Соединение закона расширения Вселенной с законами термодинамики позволяло получить логически замкнутую картину космологической эволюции вещества и излучения, в которую элементарные частицы, открываемые физикой высоких энергий, вносили лишь малые количественные поправки. Эта картина превращения радиационно-доминированной горячей плазмы в современную неоднородную структуру вещества, пронизываемую однородным фоновым излучением, качественно подтверждается данными астрономических наблюдений.

Качественно внутренне самосогласованная, эта картина требовала, однако, определенных начальных условий, задаваемых при очень высоких температурах и плотностях на очень ранних стадиях расширения Вселенной, наблюдательная информация о которых отсутствует. И для обоснования этих начальных условий космология должна была обратиться к таким предсказаниям теории элементарных частиц, которые оказывались недоступны лабораторной проверке.

На основе именно этих, не проверенных в лабораториях, представлений физики микромира современной космологии удалось обосновать причины расширения и замечательную однородность наблюдаемой части Вселенной, создать теорию инфляционной Вселенной, объяснить ее барионную асимметрию и природу малых начальных неоднородностей, развитие которых привело к образованию современной крупномасштабной структуры Вселенной, количественно согласовать формирование этой структуры с наблюдаемой изотропией реликтового излучения.

Эти успехи современной космологии были достигнуты ценой привлечения гипотетических форм материи, определивших скрытую массу Вселенной на различных этапах ее эволюции. Тем самым недоступные прямой проверке в астрономических наблюдениях основы современной космологии сливаются с недоступными прямому опыту основами современной теории микромира.

До тех пор пока физика микромира ограничивалась изучением отдельных превращений известных элементарных частиц, в ее теоретических построениях обращение к миру в целом казалось излишним. С другой стороны, знание законов общей эволюции Вселенной также на первый взгляд имеет мало общего с детальными представлениями об отдельных процессах с элементарными частицами.

Но, обращаясь к основаниям и симметрии микромира и начальных условий расширения Вселенной, мы обнаруживаем неразрывную связь физики элементарных частиц и космологии. Фундамент микро- и макромира оказывается единым. Изучение этого единого фундамента во всем многообразии его проявлений и является предметом космомикрофизики.

На пути к единому описанию структуры микро- и макромира космомикрофизика естественным образом сочетает теоретические исследования, вычислительный эксперимент и все возможные способы получения косвенной информации в лабораторных экспериментах и астрономических наблюдениях. Эти составные элементы космомикрофизики имеют свою специфику, к обсуждению которой мы и переходим.

4. Космические лучи

Развитие физики элементарных частиц тесно связало с изучением космического излучения — излучения, приходящего на Землю практически изотропно со всех направлений космического пространства. Измерения интенсивности космического излучения, проводимые методами, аналогичными методам регистрации радиоактивных излучений и частиц, приводят к выводу, что его интенсивность быстро растет с высотой, достигает максимума, затем уменьшается и с h=50 км остается практически постоянной.

По своему происхождению космические лучи можно разделить на несколько групп.

1) космические лучи галактического происхождения. Источником ГКЛ является наша Галактика, в которой происходит ускорение частиц до энергий ~1018 эВ.

2) космические лучи метагалактического происхождения, они имеют самые большие энергии, E>1018 эВ, образуются в других галактиках.

3) Солнечные космические лучи, генерируемые на Солнце во время солнечных вспышек.

4) Аномальные космические лучи, образующиеся в Солнечной системе на периферии гелиомагнитосферы.

Основными типами детекторов, которые используются при изучении космических лучей, являются фотоэмульсии и рентгеновские пленки, ионизационные камеры, газоразрядные счетчики, счетчики нейтронов, черенковские и сцинтилляционные счетчики, твердотельные полупроводниковые детекторы, искровые и дрейфовые камеры.

Различают первичное и вторичное космические излучения. Излучение, приходящее непосредственно из космоса, называют первичным космическим излучением. Исследование его состава показало, что первичное излучение представляет собой поток элементарных частиц высокой энергии, причем более 90% из них составляют протоны с энергией примерно 109 – 1013 эВ, около 7% α-частицы и лишь небольшая доля (около 1%) приходится на ядра более тяжелых элементов (Z>20). По современным представлениям, основанным на данных астрофизики и радиоастрономии, считается, что первичное космическое излучение имеет в основном галактическое происхождение. Считается, что ускорение частиц до столь высоких энергий может происходить при столкновении сдвижущимися межзвездными магнитными полями. При h=50 км интенсивность космического излучения постоянна; на этих высотах наблюдается лишь первичное излучение.

С приближением к Земле интенсивность космического излучения возрастает, что свидетельствует о появлении вторичногокосмического излучения, которое образуется в результате взаимодействия первичного космического излучения с ядрами атомов земной атмосферы. Во вторичном космическом излучении встречаются практически все известные элементарные частицы. При h<20 км космическое излучение является вторичным; с уменьшением hего интенсивность понижается, поскольку вторичные частицы по мере продвижения к поверхности Земли испытывают поглощение.

В составе вторичного космического излучения можно выделить два компонента: мягкий (сильно поглощается свинцом) и жесткий (обладает в свинце большой проникающей способностью). Происхождение мягкого компонента объясняется следующим образом. В космическом пространстве всегда имеются γ-кванты с энергией E>2mec2, которые в поле атомных ядер превращаются в электронно-позитронные пары. Образовавшиеся таким образом электроны и позитроны, тормозясь, в свою очередь, создают, энергия которых еще достаточна для образования новых электронно-позитронных пар и т. д. до тех пор, пока энергия γ-квантов не будет меньше 2mec2. Отписанный процесс называется электронно-позитронно-фотоновым (или каскадным) ливнем. Хотя первичные частицы, приводящие к образованию этих ливней, и обладают огромными энергиями, но ливневые частицы являются "мягкими" - не проходят через большие толщи вещества. Таким образом, ливневые частицы — электроны, позитроны и γ-кванты – и представляют собой мягкий компонент вторичного космического излучения.

Каскады в атмосфере, вызываемые частицами больших энергий и занимающие обширные площади, получили название широких атмосферных ливней. Они были открыты французским физиком П. Оже и его сотрудниками в 1938 году. Высокоэнергичная космическая частица образует ливень с огромным числом вторичных частиц, так, например, частица с E=1016 эВ в результате взаимодействий с атомами воздуха вблизи поверхности Земли порождает примерно 10 млн. вторичных частиц, распределенных на большой площади.

Хотя поток высокоэнергичных космических лучей, падающих на границу земной атмосферы, крайне мал, широкие атмосферные ливни занимают значительные площади и могут быть зарегистрированы с высокой эффективностью. Для этой цели на поверхности земли размещаются детекторы частиц на площади в десятки квадратных километров, причем регистрируются только те события, в которых срабатывает сразу несколько детекторов.

Исследование космического излучения, с одной стороны, позволило на начальном этапе развития физики элементарных частиц получить основные экспериментальные данные, на которых базировалась эта область науки, а с другой — дало возможность и сейчас изучать процессы с частицами сверхвысоких энергий вплоть до 1021 эВ, которые еще не получены искусственным путем. С начала 50-х годов для исследования элементарных частиц стали применять ускорители (позволяют ускорить частицы до сотен гигаэлектрон-вольт), в связи с чем космическоеизлучение утратило свою исключительность при их изучении, оставаясь лишь основным "источником" частиц в области сверхвысоких энергий.

5. Заключение

В развитии современной физики высоких энергий (физики элементарных частиц) космические лучи сыграли роль прародителей этой области физики. Они явились источником крупнейших открытий XX века: открытия антиматерии (позитрона), тяжелых электронов (мюонов), открытия, как думали раньше, основного носителя ядерных сил - пиона, который играет ведущую роль в ядерных процессах, открытия странных частиц и чармированных частиц. Их изучение привело к открытию процесса множественного рождения частиц, открытиям электромагнитного и ядерно-каскадного процессов при прохождении частиц через вещество. Как известно, после создания ускорителей электронов, протонов и атомных ядер исследование элементарных частиц и их свойств переместилось из космических лучей на ускорители. Космическим лучам сейчас отведена другая существенная роль - поставлять частицы сверхускорительной энергии для детальной разведки того, что при сверхвысоких энергиях видно нового и необычного по сравнению с тем, что уже открыто и известно из работ на ускорителях.