Возможность проведения шотган-экспериментов рассматривалась еще тогда, когда технология рекомбинантных ДНК делала свои первые шаги. Идея амплификации очень сложных смесей фрагментов ДНК и последующего обнаружения одного из них казалась фантастичной, а сейчас она представляется почти банальной. Основной принцип этого подхода состоит в создании коллекции рекомбинантных молекул, составляющих полный геном данного организма. По существу, полный нефракционированный набор фрагментов ДНК превращают в соответствующий набор стабильных рекомбинантов, который можно сохранять и многократно использовать для клонирования различных вставок. При этом применяются Е. сой-системы хозяин-вектор, где в качестве вектора используются плазмиды или бактериофаги, поскольку они более пригодны для получения большого числа рекомбинантных молекул и удобны для хранения.
Наиболее важны два типа библиотек. Одна из них, создаваемая из суммарной геномной ДНК, в принципе должна содержать все гены данного организма. Однако такая цель обычно оказывается недостижимой, поскольку некоторые последовательности ДНК не удается клонировать. Один из вариантов геномной библиотеки представляет собой всю ДНК какой-то одной хромосомы. Для создания такой библиотеки необходимо выделить ДНК из отдельных хромосом. Хромосомы человека фракционируют с помощью методов, аналогичных используемым при сортировке флуоресцирующих и нефлуоресцирующих клеток. Метод основан на разной эффективности связывания флуоресцирующих красителей с хромосомами, которая зависит от размера хромосом и GC-содержания ДНК. Раствор окрашенных хромосом пропускают с высокой скоростью через узкое отверстие, на которое сфокусирован пучок света, испускаемого лазером. Хромосомы поочередно пересекают этот пучок, который индуцирует их специфическую флуоресценцию. Детектор определяет интенсивность флуоресценции и изменяет направление движения тех хромосом, интенсивность флуоресценции которых превышает заданную величину, таким образом, что они попадают в специальный коллектор. Изменяя этот заранее установленный уровень интенсивности флуоресценции, можно отбирать разные хромосомы.
Отдельные хромосомы дрожжей и некоторых простейших невозможно идентифицировать цитогенетическими методами, однако ДНК из них все же удается выделить. Для выделения применяют мягкие методы, чтобы избежать разрыва молекул. Затем ДНК подвергают электрофорезу в агарозном геле в условиях, позволяющих разделить молекулы длиной до 2000 т.п. н. Традиционные методы электрофореза не позволяют разделять дуплексные молекулы, размер которых значительно превышает 20 т.п. н. Скорость миграции столь больших молекул уже не зависит от их размера. Однако если вместо постоянного однонаправленного электрического поля, приложенного к обычному гелю, использовать поле, ориентация которого многократно меняется, то даже очень большие молекулы можно будет разделить по размерам. По-видимому, этот феномен объясняется механизмом прохождения молекул ДНК через поры агарозного геля. Предполагается, что молекулы вытягиваются в направлении поля, а затем при изменении этого направления переориентируются. Время переориентации зависит от длины цепи и угла между направлениями поля; они и определяют конечное расстояние, на которое перемещается молекула. В простейшем варианте импульсного электрофореза электрический ток подается импульсами, при этом направления поля примерно перпендикулярны друг другу, а само поле неоднородно. При более сложных распределениях используют однородные поля и оптимизируют угол между двумя направлениями, с тем чтобы повысить разрешение. Импульс обычно длится примерно минуту.
Библиотеки второго типа включают последовательности, составляющие всю мРНК, обнаруживаемую в определенных клетках. В этом случае популяцию мРНК превращают в популяцию молекул кДНК, которые затем клонируют. Геномные библиотеки представляют собой собрание генов и последовательностей ДНК; в библиотеках кДНК представлены продукты экспрессии этих генов в форме мРНК.
а. Геномные библиотеки
Геномные библиотеки обычно создают с помощью векторов, сконструированных на основе бактериофага X или космиды. Эти векторы содержат большие вставки, благодаря чему минимизируется число рекомбинантов, наобходимых для составления библиотеки. Например, если создается Х-библиотека генома млекопитающего, содержащего 3*109 п. н. при средней длине вставки 17 т.п. н., то весь геном будет представлен 3* 109/1,7* 104 = 1,8* 105 рекомбинантами. На самом деле для создания библиотеки, вероятность обнаружения в которой определенного сегмента генома превышает 99%, нужно получить ~ 106 отдельных рекомбинантных молекул, поскольку лигирование отдельных фрагментов происходит случайно. Так, некоторые фрагменты могут быть включены более чем в одну векторную молекулу, а другие могут вообще не участвовать в лигировании и упаковке. Полная космидная библиотека содержит меньше рекомбинантных молекул, поскольку размер вставок может достигать 45 т.п. н.
Фрагменты суммарной геномной ДНК для конструирования библиотек можно получать несколькими способами. Наиболее удобный из них состоит в частичном расщеплении ДНК рестриктирующей эндонуклеазой, сайт узнавания которой содержит шесть оснований, а образующиеся липкие концы соответствуют липким концам выбранного вектора. В этом случае разрезание осуществляют лишь в ограниченном числе возможных сайтов. Поскольку выбор таких сайтов производится случайно и в используемом препарате геномной ДНК содержится много копий любого геномного сегмента, практически каждый сегмент ДНК должен быть представлен во фрагментах ДНК, пригодных по своему размеру для клонирования. При таком подходе, однако, может получиться неполная библиотека. Те части генома, в которых сайты узнавания рестриктирующих эндонуклеаз находятся слишком далеко друг от друга, не смогут включиться в жизнеспособный рекомбинантный фаг. С другой стороны, те области генома, в которых сайты узнавания тесно сгруппированы, будут разделены на очень короткие фрагменты, и не все из них будут представлены в библиотеке.
Вообще говоря, более репрезентативную библиотеку можно получить при частичной фрагментации геномной ДНК, осуществляемой более случайно, чем с помощью фермента с сайтом узнавания из шести пар оснований. Для этого можно использовать гидродинамические методы деградации ДНК или очень ограниченную обработку эндонуклеазами с сайтами узнавания из четырех пар оснований, например Alu I и Нае III.
б. Библиотеки кДНК
Для создания библиотек кДНК обычно используют плазмидные или фаговые векторы, сконструированные на основе бактериофага X. Принципы конструирования не отличаются от описанных, за исключением того, что в этих случаях чаще используют смесь разных мРНК, а не очищенную мРНК. Полученные с помощью специально сконструированных векторов или определенным образом отобранные библиотеки кДНК могут использоваться для клонирования последовательностей мРНК даже в тех случаях, когда аминокислотная последовательность белка и кодирующая нуклеотидная последовательность неизвестны и даже отсутствует гомологичный зонд. Соответствующие примеры мы рассмотрим ниже.
Библиотека экспрессирующихся кДНК. Очищенную кДНК или смесь разных кДНК можно лигировать с векторами, специально сконструированными для осуществления транскрипции и трансляции кодирующей области кДНК. Нужный клон идентифицируют с помощью иммунологического скрининга с применением антител, специфичных к полипептиду, кодируемому данной кДНк. Эта весьма удобная методика позволяет осуществить клонирование даже тогда, когда ничего не известно о структуре нужного нам гена или белка.
Одним из векторов, широко применяемых для изучения экспрессии, является производное фага X, получившее название Xgtll. Когда кДНК, содержащие EсоRI-линкеры, включаются в вектор Xgtll в его единственном сайте для эндонуклеазы EcoRI, вставки оказываются в области, кодирующей бактериальный ген в-галактозидазы. Примерно одна из шести кДНК-вставок включается в подходящей для транскрипции ориентации и в фазе с рамкой считывания в-галактозидазы. При индукции в-галактозидазного гена с помощью в-галактозида в lac-промоторе начинается транскрипция, которая распространяется на эукариотический сегмент. В результате трансляции соответствующей РНК образуется гибридный белок, у которого на N-конце находится в-галактозидазный полипептид, а на С-конце-эукариотический. Библиотека кДНК, созданная с помощью A. gt11, образует популяцию бляшек, отдельные члены которой содержат эти гибридные белки. Бляшку, содержащую интересующий нас белок, идентифицируют по ее способности связывать соответствующее антитело. На одной чашке можно выявить одну позитивную бляшку среди 104 и без труда провести скрининг 106 бляшек.
Библиотеки селективных кДНК. Развитие и дифференцировка сложных многоклеточных организмов из одной оплодотворенной яйцеклетки осуществляются с помощью высокоорганизованной системы дифференцированной экспрессии генов. Одни гены экспрессируются только в одном или строго ограниченном числе типов клеток, другие - в какой-то определенный период времени. В результате популяции цитоплазматических мРНК в различных тканях и клетках оказываются представленными разными молекулами. Такая дифференцированная экспрессия генов может использоваться для клонирования кДНК, соответствующих регулируемым генам, даже в тех случаях, когда о продуктах этих генов ничего не известно.