Смекни!
smekni.com

Исследование роста микромицетов на различных субстратах (стр. 2 из 9)

Ветвление мицелия, растущего из разных КОЕ, на первых этапах формирования грибных микроколоний также может отличаться. В экспоненциальной фазе роста в микроколониях, растущих из спор, единица гифального роста (ЕГР) часто была выше (то есть ветвление реже), чем в микроколониях, растущих из фрагментов гиф.

Линейный рост при развитии колоний из фрагментов гиф наступал раньше. Далее в этой фазе скорости мицелия из фрагментов гиф и спор грибов не различались; величина ЕГР стабилизировалась и не зависела от типа исходных КОЕ. То есть, в линейной фазе роста все различия между микроколониями, сформированными из разных КОЕ, нивелировались (Иванова, 1999).

1.1.3 Влияние экологических условий на жизнеспособность мицелия микроскопических грибов

При определении жизнеспособности грибного мицелия разной длины в различных экологических условиях среды, установлено, что увеличение концентрации органического вещества (сахарозы) в интервале 0–20 г/л было благоприятно для фрагментов Mucorhiemalis, способность к росту у которых возрастала (Иванова, 1999). Высокая концентрация сахарозы (100 г/л), наоборот, подавляла рост крупных фрагментов M. hiemalis. Число жизнеспособных фрагментов мицелия разной длины Penicilliumspinulosum больше при низких концентрациях сахарозы, а ее высокое содержание подавляет рост мелких (30–60 мкм) фрагментов. При высоком содержании сахарозы увеличивается доля растущих после взбалтывания на качалке коротких фрагментов (20–100 мкм, или 3–6 клеток) Alternariaalternatа, а жизнеспособность крупных фрагментов гиф (> 130 мкм, или > 9 клеток) не изменялась. Однако, после обработки ультразвуком высокий уровень сахарозы (100 г/л) подавлял рост фрагментов A. alternatа любой длины.

При низких температурах у всех исследованных видов грибов (Alternariaalternata, Mucorhiemalis, Penicilliumspinulosum) было отмечено значительное снижение способности к росту. Наиболее чувствительным оказался вид P. spinulosum, для которого 4 С – это нижний температурный предел роста: при 4 С даже крупные фрагменты практически не растут. Мелкие фрагменты M. hiemalis тоже теряли способность к росту при 4С. В несколько (4-6) раз уменьшалась жизнеспособность фрагментов A. alternatа.

Максимальная способность к росту мелких фрагментов M. hiemalis отмечалась при 25, 30С. Жизнеспособность фрагментов A. alternatа практически не изменялась при 20, 25, 30С. Мелкие и крупные фрагменты P. spinulosum наибольшую способность к росту проявляли при 20С, при увеличении температуры до 30С их жизнеспособность снижалась.

Изменение кислотности среды не оказывало существенного влияния на жизнеспособность фрагментов M. hiemalis и A. alternatа. Число способных к росту фрагментов P. spinulosum было наибольшим в нейтральных условиях среды, уменьшение pH от 7,0 до 3,5 приводило к снижению жизнеспособности всех фрагментов P. spinulosum, а мелкие фрагменты в кислых условиях не росли вовсе. С увеличением кислотности наблюдается подавление роста фрагментов мицелия. В варианте с максимальной кислотностью среды (pH 3,0) рост коротких (20–50 мкм) и средней длины (51–100 мкм) фрагментов отсутствовал практически полностью. Наиболее стабильный и сбалансированный рост фрагментов различной длины отмечается в вариантах с нейтральной и слабощелочной реакцией среды – 7,0 и 8,0 pH. При этом активный рост наблюдается и у коротких, и у длинных фрагментов (Григорьев, 2004).

Загрязнение возрастающими дозами тяжелого металла – кадмия оказывало негативное влияние на способность к росту всех фрагментов P. spinulosum. Напротив, присутствие кадмия вызывало повышение жизнеспособности фрагментов разной длины мицелия A. alternatа и малых (85 – 140 мкм) фрагментов M. hiemalis (Иванова, 1999).

1.2 Особенности использования микромицетами различных природных веществ в качестве единственного источника углерода

1.2.1 Разложение легкоусвояемых органических веществ

Важнейшая, быстрее всего усвояемая пища плесневых грибов состоит из моносахаридов и других низкомолекулярных водорастворимых соединений углерода, которые могут непосредственно поглощаться протопластом. Почти все организмы ассимилируют простые сахара и аналогичные им молекулы одинаково, однако грибы, конкурируя за эти питательные вещества, обладают некоторыми существенными преимуществами. Как только какой–либо живой или мертвый органический субстрат основательно увлажняется, возникает водный раствор, содержащий по крайней мере следы питательных веществ. Тотчас же там развиваются талломы «подходящих» грибов, быстро образуются их новые вегетативные единицы, и стремительно размножающаяся популяция полностью берет на себя использование данного источника пищи. За подобные субстраты с грибами конкурируют бактерии; получит ли преимущество кто-то из них или они будут сосуществовать относительно «равноправно», зависит от обстоятельств, и общего правила здесь вывести невозможно.

В отсутствие источников азота некоторые грибы окисляют глюкозу до глюконовой кислоты. При этом pH падает ниже 2,0, и обычные бактерии уже не могут размножаться, однако сами грибы при последующем поступлении азота способны утилизовать глюконовую кислоту. Примеров, объясняющих превосходство грибов над бактериями особенностями первичного обмена веществ, немного. Что касается превращений низкомолекулярных органических соединений, для грибов специфичны определенные пути разложения сахаров.

Разложение сахаров.В клетку часто проникают моносахариды – продукты внеклеточного разложения полисахаридов; ди- и олигосахариды также поглощаются из окружающей среды и включаются в метаболизм. Необходимые для этого ферменты либо широко распространены (мальтоза, сахароза и так далее), либо обнаружены у более или менее многих представителей грибов (Lodder, 1970; Barnett, 1979).

Наиболее обычный источник углерода – глюкоза. Полное разложение одного ее моля дает 675 ккал энергии. Другие гексозы (глюкоза – не обязательно) включаются в универсальный процесс разложения только после фосфорилирования; этим же путем идут продукты расщепления внеклеточных полисахаридов, запасных и входящих в состав клеточной стенки макромолекул.

Первая реакция разложения гексоз протекает с использованием энергии.

При этом с участием фермента гексокиназы из глюкозы, фруктозы и маннита возникают соответствующие гексозо-6-фосфаты, а из галактозы под действием галактокиназы – галактозо-1-фосфат, который затем изомеризуется. Разложение сахаров протекает в грибной клетке следующими основными путями.

Фруктозодифосфатный путь(ФДФ, гликолиз, путь Эмбдена-Мейргофа-Парнаса) может вести к полному окислению, неполностью окисленным конечным продуктам или ответвляться в сторону образования сырья для биосинтеза. Гликолитические реакции в клетке начинаются с фосфорилирования глюкозы (в форме фосфатов сахара более рекционноспособны). При трансформации глюкозы в пировиноградную кислоту по пути Эмбдена-Мейргофа-Парнаса выделяется свободная энергия, достаточная для образования четырех молекул АТФ. Однако две из них требуются для превращения глюкозы в фруктозо-1,6-дифосфат, и только две молекулы АТФ остаются для процессов синтеза.

Пентозофосфатный путь (ПФ) либо поставляет промежуточные продукты для последующего биосинтеза, в том числе нуклеотидов, либо продолжается по типу ФДФ.

При разложении через 2-кето-3-дезокси-6-фосфоглюконовую кислоту (КДФГ, путь Энтнера-Дудорова =ЭД) продукты расщепления КДФГ, образующейся путем дегидратации 6-фосфоглюконовой кислоты (глицеральдегидфосфат, пировиноградная кислота; быстро и непосредственно попадают в систему гликолиза).

С помощью глюкооксидазы (ГО) некоторые виды Aspergillus и Penicillium окисляют непосредственно глюкозу до глюконовой кислоты, которая выделяется в среду или включается в ПФ; возникающая при этом ядовитая для всех организмов перекись водорода ферментативно разрушается.

В глиоксилатном цикле (ГЦ) – побочном пути цикла лимонной кислоты (ЦЛК) – изолимонная кислота, возникающая из ацетил- кофермента А и щавелевоуксусной кислоты, превращается в янтарную и глиоксиловую кислоты; последняя, реагируя с ацетил- коферментом А, дает яблочную кислоту, позволяющую продолжаться ЦЛК. Недостаток субстрата для ЦЛК может возникать, например, из–за расходования α- кетоглутаровой кислоты для синтеза аминокислот, тогда глиоксилатный путь заменяет отсутствующие промежуточные звенья (реакции пополнения, анаплеротические последовательности). Глюкоза и продукты ее разложения стимулируют нормальное протекание ЦЛК и подавляют ГЦ, который может активироваться присутствием в среде ацетата или глицина.

Полное окисление. С помощью дыхательных ферментов процесс соединения водорода с кислородом, дающий энергию почти всем организмам, подразделяется на мелкие этапы с незначительными различиями в энергосодержании исходных веществ и продуктов («биологический взрыв гремучего газа»). В ходе этих отдельных реакций, в частности, регенерируется АТФ. Ферментные системы различных организмов, несмотря на существенные общие черты неодинаковы. Так, у оомицетов отсутствует цитохром С1, свойствовенный грибам и растениям, а у одного из представителей рода Aspergillus отмечен цитохром, не отравляемый цианидом – (аналогичный В-цитохрому растений).

Доступность и использование различных путей разложения углеводов. То, какой путь задействован, зависит от организма, среды и состояния клетки, например от активности ее ферментов. Для определения этого количественно оценивают превращения субстрата соответствующими ключевыми ферментами.

Полиолы. Многоатомные спирты (полиолы), например маннит, рибит, глицерин, – результат окисления глюкозо-фосфата или соответствующих предшественников, конкурентного глюконеогенезу, спиртовому брожению или полному окислению в ЦЛК, а также синтезу макромолекул или другим реакциям с использованием АТФ и восстановлением НАДФ. Возможно, полиолы вместе с трегалозой служат у грибов формой транспорта углерода в гифах; они способны регулировать восстановительную силу, энергоснабжение, осмотические условия, содержание запасных веществ и рост. Некоторые авторы считают состав полиолов у грибов важным таксономическим признаком: у хитридиомицетов, аскомицетов, базидиомицетов и дейтеромицетов преобладает маннит, у зигомицетов его нет или же он не относится к главным компонентам; в целом у грибоподобных протистов полиолов меньше, чем у настоящих грибов. Наряду с такими наиболее частыми многоатомными спиртами, как глицерин (почти у всех) и манит (у всех грибов, кроме ряда зигомицетов), обнаружены также эритрит, рибит и арабит, известные и у водорослей. Концентрация рибита у Mucorales (Zygomycetes) зависит от питания (рост при потреблении рибозы). Арабит в крови человека указывает на грибную инфекцию (например, поражение Candidaalbicans); у здоровых людей он отсутствует. Здесь также выделяются оомицеты, у которых не обнаружено никаких полиолов; некоторые другие группы низших грибов (грибоподобных протистов) до сих пор изучены в этом плане недостаточно (Мюллер, 1995).