Смекни!
smekni.com

Биосинтез мембранных белков и их встраивание в биомембрану (стр. 2 из 4)

Еще одним независимым условием переноса белков в матрикс митохондрий и во внутреннюю мембрану митохондрий является наличие на последней трансмембранного потенциала. Этот потенциал, очевидно, необходим на ранней стадии процесса, при связывании белка с митохондрией.

3. Способность предшественника к переносу. Имеются веские доводы в пользу того, что ключевую роль в успешном переносе белка играет его четвертичная структура. Скорее всего это связано с тем, что сигнальная последовательность(ти), узнаваемая аппаратом переноса, должна быть доступна для него. Следовательно, для осуществления переноса белок должен быть неплотно свернут или частично развернут. Кроме того, если белки переносятся через мембрану в вытянутой конформации, то аппарат переноса должен быть способен к их развертыванию во время самого процесса переноса. Если бы белки- предшественники обладали стабильной четвертичной структурой, то они с трудом развертывались бы и, следовательно, не были бы способны к переносу.

Транспорт белков осуществляется в развернутом виде. АТР необходим для разворачивания полипептида. Разворачивание происходит до переноса или параллельно ему. На то, что именно АТР необходим для этого процесса, говорит тот факт, что транспорт укороченных предшественников в отличие от транспорта полноразмерного белка может осуществляться в отсутствии АТР. Впервые эти данные были сделаны на основе изучения митохондриальной мембраны. Для предотвращения свертывания предшественника в нативную конформацию необходим какой-либо растворимый белковый кофактор. Так, был выделен в водорастворимой форме, сходный порином митохондрий, предшественник белка наружной мембраны Е.coliOmpA, который был не способен к эффективному переносу через плазматическую мембрану, если в цитозоле отсутствовал белок, называемый «триггер-фактором». Известно также, что для переноса белков через мембраны эндоплазматического ретикулума млекопитающих или в эндоплазматичекий ретикулум необходим растворимый кофактор, а именно – сигнал-распознающая частица (СРЧ). Возможно, роль этого фактора состоит в предотвращении сворачивания предшественника полипептида.


2. Встраивание белков в мембрану

2.1 Сигнальная гипотеза

Белки встраиваются в мембрану разными способами, но детали этого процесса во многих случаях еще не установлены. Для объяснения механизма встраивания предложены две модели: сигнальная гипотеза и мембранная триггерная гипотеза. В сигнальной гипотезе предполагается, что белок включается в мембрану параллельно его трансляции на мРНК в полирибосомах; это так называемое котрансляционное включение. Когда лидерная последовательность выходит из рибосомы, она выявляется некой сигнал-распознающей частицей (СРЧ), которая блокирует дальнейшую трансляцию на уровне примерно 70 аминокислот, 40 из которых остаются в большом рибосомном комплексе, а 30 экспонированы в среду. СРЧ содержит шесть белков, с ней ассоциирована 7S-РНК, близкородственная «Alu-семейству» последовательностей ДНК с большим числом повторов. Блокирование трансляции не снимается до тех пор, пока комплекс СРЧ-лидерная последовательность – рибосома не свяжется с так называемым «отстригающим» белком (рецептором для СРЧ) эндоплазматического ретикулума. В этот момент начинается котрансляционное встраивание в эндоплазматический ретикулум. В процессе элонгации оставшейся части белка он перемещается через липидный бислой, поскольку рибосома остается присоединенной к эндоплазматическому ретикулуму. Таким образом образуется шероховатый (усеянный рибосомами) эндоплазматический ретикулум. Рибосомы остаются прикрепленными к эндоплазматическому ретикулуму втечении всего времени синтеза мембранного белка и освобождаются и диссоциируют на соответствующие субъединицы только после его завершения. Когда ранее синтезированная часть белка выходит в просвет эндоплазматического ретикулума, отщепляется лидерная последовательность, и присоединяются углеводы.

Интегральные мембранные белки не пересекают мембрану целиком; по-видимому, этому препятствует гидрофильная якорная последовательность на С-конце. Секретируемые же белки проходят сквозь мембранный бислой полностью и высвобождаются в просвет эндоплазматического ретикулума. К моменту их поступления внутрь везикулы углеводные остатки уже оказываются связанными с ними. Впоследствии секретируемые белки обнаруживаются в просвете аппарата Гольджи, где происходит модификация их углеводных цепочек, а затем они перемещаются к специфическим внутриклеточным органеллам или клеточным мембранам либо секретируются. Некоторые белки пересекают одну мембрану, а затем заякориваются в другой, соседней мембране, например внутренней мембране митохондрий.

2.2 Мембранная триггерная гипотеза

В этой гипотезе особое значение придается роли лидерной последовательности в изменении третичной структуры самого белка. Согласно этой гипотезе, лидерная последовательность индуцирует такую упаковку обычно гидрофобного интегрального белка, что последний может оставаться солюбилизированным в водной среде цитоплазмы, где он синтезирован. Мембранный липидный бислой является как бы триггером по отношению к третичной структуре белка – последний переходит в такую конформацию, которая обеспечивает его предпочтительное включение в бислой. Таким образом, белок претерпевает некий переход и сам встраивается в мембрану таким способом, чтобы установить необходимую поперечную асимметрию. Сразу после встраивания белка или его интеграции лидерная последовательность отщепляется. Триггерная гипотеза не предполагает специфического взаимодействия между рибосомой и мембраной, но это еще не означает, что синтез белка не может происходить на мембранах. Возможно, в одной и той же клетке действуют оба механизма.

3. Полипептидные сигналы, отвечающие за сортировку белков и

встраивание их в мембраны

Об аппарате и механизме переноса почти ничего неизвестно, немного больше известно о сигнальных последовательностях, присутствующих в полипептидах и направляющих каждый белок в нужное место. Успехов в этой области удалось достичь благодаря использованию техники рекомбинантных ДНК. С ее помощью были сконструированы гибридные полипептиды, в которые была включена тестируемая аминокислотная последовательность, принадлежащая другому белку. Таким образом можно было изучать влияние предполагаемой сигнальной последовательности на локализацию «белка-пассажира». Преимущества такого подхода удается использовать только в том случае, если вся информация, определяющая локализацию конечного продукта, заключена в первичной последовательности сигнала и если «белок-пассажир» является нейтральным участником процесса и, что существенно, подчиняется сигналу. Это условие выполняется во многих случаях, но известны и такие примеры, когда эффективность переноса или даже конечная локализация зависят от «белка-пассажира». Если «белок-пассажир» находится в конформации, не способной к переносу, то может происходить блокирование переноса химерного белка. Кроме того, функция некоторых сигнальных последовательностей зависит от их локализации в полипептиде или от взаимодействия с другими участками полипептидной цепи.

3.1 Сигнальная последовательность, определяющая встраивание в

эндоплазматический ретикулум

У большинства белков, встроенных в мембрану эндоплазматического ретикулума или пересекающих ее, на N-конце имеется «короткоживущий» сигнальный пептид. Это сигнальная последовательность непосредственно взаимодействует по крайней мере с двумя рецепторами, один из которых растворим (сигнал-распознающая частица), а другой находится в мембране. Можно было бы ожидать, что аминокислотная последовательность этого сигнального пептида будет очень консервативной и примерно одинаковой у всех переносимых белков, но ожидания эти не оправдались. Эти сигнальные участки не отличаются постоянством ни в отношении длины, ни в отношении аминокислотной последовательности, а многочисленные опыты по мутагенезу показали, что они могут претерпевать значительные структурные изменения. Данные о том, что сигнальные пептиды содержат всю информацию, необходимую для транспорта белков через мембраны эндоплазматического ретикулума или внутрь их, были получены в опытах с химерными полипептидами. Присоединение N-концевой сигнальной последовательности к обычным цитоплазматическим белкам, например к глобину, приводило к тому, что они транспортировались в полость эндоплазматического ретикулума.

С точки зрения «сравнительной анатомии» N-концевых сигнальных последовательностей три разных в структурном отношении участка: 1) положительно заряженный N-концевой участок (n-участок); 2) центральное гидрофобное ядро из 7-15 остатков (h-участок); 3) С-концевой участок (с-участок), который является полярным и содержит сайт, узнаваемый сигнальной пептидазой, которая находится на стороне эндоплазматического рутикулума, обращенной в полость.

От небольших изменений в сигнальных последовательностях зависит, будет ли «белок-пассажир» секретироваться в полость эндоплазматического ретикулума или он останется прикрепленным к мембране, и какой будет ориентация N-конца мембранного белка.