Смекни!
smekni.com

Вероятные функции белков, синтезирующихся при гипотермии (стр. 2 из 2)

Способность контролировать внеклеточное образование льда во время замораживания является критической для выживаемости толерантных к замораживанию растений. Антифризные белки, которые являются белками, способными тормозить рост кристаллов льда, недавно были отождествлены как самые распространенные апопластные белки в листьях акклиматизированной к холоду озимой ржи. Сравнения амино-терминальных последовательностей, иммуно-перекрестной реактивности и ферментативной активности показали, что эти антифризные белки сходны с членами трех классов белков, относящихся к патогенезу, а именно, с эндохитиназами, эндо-бета– 1,3– глюканазами и тауматин-подобными белками. Апопластные эндохитиназы и эндо-бета–1,3–глюканазы сильно индуцируются патогенами в чувствительном к замораживанию табаке и не обладают антифризной активностью. Полученные данные позволяют предлагать, что в патогенез-связанных белках могли развиться тонкие структурные различия, которые позволили этим белкам получить возможность связываться со льдом.

В листьях озимой ржи наблюдался синтез белка, продуцируемого эндогенно и выделяющегося в вакуоли и межклеточное пространство, который значительно изменял картину роста ледяных кристаллов и понижал температуру замерзания раствора. В дальнейшем этими же авторами из апопласта листьев озимой ржи были выделены шесть антифризных белков, обладающих способностью абсорбироваться на поверхности льда и подавлять рост кристаллов. Антифризные белки ржи накапливались во время холодовой акклиматизации и сходны с растительными белками, связанными с патогенезом, включая два эндоглюканазоподобных, два хитиназоподобных и два тауматинподобных белка. Иммунолокализация эндоглюканазоподобных белков показала, что они накапливаются на межклеточной поверхности клеточных стенок мезофилла, в опектиненных районах, во вторичных клеточных стенках ксилемных сосудов и в эпидермальных клеточных стенках. Поскольку антифризные белки ржи локализованы в местах, где возможен их контакт со льдом, они могут выполнять функцию барьера на пути распространения льда или подавлять рекристаллизацию льда. Антифризные белки, сходные с патогенез-связанными белками, были также обнаружены в других видах трибы Triticae, но не у морозоустойчивых двудольных растений. Было установлено, что у озимой пшеницы накопление антифризных белков и развитие холодоустойчивости регулируются пятой хромосомой.

Синтез значительного количества апопластных белков с молекулярными массами от 15 до 109 кДа наблюдался в процессе повышения морозоустойчивости озимой ржи. Для определения того, является ли накопление этих антифризных белков общим явлением для травянистых растений, были исследованы антифризная активность и общее содержание белка в экстракте апопласта листьев ряда видов растений, растущих при низких температурах, включая как однодольные, так и двудольные. Белки апопласта разделялись SDS-ПААГ электрофорезом и с помощью иммуноблоттинга определялось, действительно ли растения отвечают на низкие температуры накоплением белков, связанных с патогенезом. Полученные результаты показывают, что значительны уровень антифризной активности присутствовал только в апопласте морозоустойчивых однодольных растений после холодовой акклиматизации при 5,20С. Более того, во время холодовой акклиматизации только тесно связанная группа растений – рожь, пшеница и ячмень – накапливали антифризные белки, сходные со связанными с патогенезом белками. При этом накопление антифризных белков является специфическим ответом, который может быть скорее важен в холодоустойчивости некоторых видов растений, чем как общи ответ всех растений на низкотемпературны стресс.

Два антифризных белка ржи с молекулярными массами 32 и 35 кДа аналогичны в их аминокислотных последовательностях и эпитопах бета – 1,3 – эндоглюканазе. Локализация этих антифризных белков, которые были обозначены как глюканазоподобные белки, была установлена с использованием иммунной сыворотки, полученной против антифризного белка 32 кДа. Иммуноэлектронная микроскопия высокого разрешения листьев акклиматизированных к холоду растений выявила высокое содержание GLP в стенках клеток мезофилла, в стенках клеток, смежных с межклеточными пространствами, и во второстепенных сосудах ксилемы. Учитывая отсутствие GLP в вакуолях, эти результаты подтверждают накопление апопластных антифризных белков в акклиматизированных к холоду растениях озимой ржи. В пределах клетки GLP локализовались в цистернах шероховатого эндоплазматического ретикулума, аппарате Гольджи и плазматической мембране, что указывает на то, что GLP выделяются через экзоцитозный путь. Наличие высокого содержания GLP в листьях акклиматизированных к холоду растений, их низкое содержание в листьях неакклиматизированных растений и недостаток GLP в корнях позволяют считать, что имеется корреляция между возрастающим накоплением GLP и повышением морозоустойчивости этих растений. Кроме того, локализация GLP в непосредственной близости к магистралям для свободно воды в пределах тканей подтверждает, что эти белки играют важную роль в кристаллизации и / или рекристаллизации воды при ее замораживании.

Антифризные белки обладают способностью тормозить образование льда. Для того, чтобы объяснять их роль в данном процессе, были проведены определение их концентрации и иммунолокализация этих белков в листьях, побегах и корнях озимой ржи. Каждый из общих растворимых белков, экстрагированных из акклиматизированных к холоду ржаных листьев, стебле и корне, обладал антифризной активностью, в то время как отсутствие антифризной активности наблюдалась в экстрактах из неакклиматизированных растений ржи. Антитела, полученные против трех апопластных антифризных белков из ржи, соответствующих глюконазоподобному белку, хитиназоподобному белку и тауматиноподобному белку, были использованы для обработки тканевых отпечатков. При этом было показано, что антифризные белки локализуются в эпидермисе и в клетках, окружающих межклеточные пространства, у акклиматизированных к холоду растений. Хотя GLP, CLP и TLP присутствовали в неакклиматизированных растениях, они обнаруживались в других местах и не обладали антифризной активностью, что подтверждает, что при низко температуре производятся другие изоформы связанных с патогенезом белков. Локализация антифризных белков у ржи может предотвращать вторичное повреждение клеток эпифипическим льдом или льдом, распространяющимся через ксилему. Распространение белков, связанных с патогенезом, и белков GLP, CLP, и TLP, накапливающихся под действием холода, аналогично и может отражать общие пути, которыми как патогены, так и лед входят и распространяются по тканям растения.

Синтетически ген антифризного белка экспрессировался в растениях и, как показали результаты экспериментов, снижал утечку электролита из листьев при температуре замерзания почвы. Синтетически антифризны белок экспрессировался в качестве слитого с сигнальным пептидом, направляющим его к межклеточному пространству, где вначале проявляется кристаллизация льда. Ген был введен в SolanumtuberosumL. Cv. RussetBurbank при помощи Agrobacterium-опосредованной трансформации. Трансформанты идентифицировались при помощи PCR– скрининга и экспрессия введенного белка проверялась иммуноблоттингом. Анализ высвобождения электролитов из листьев трансгенных растений выявил корреляцию между уровнем экспрессии трансгенного белка и степенью выносливости к замерзанию почвы.

Применение методик, основанных на изучении рекристаллизации льда, позволило в последнее время установить в ряде видов растений наличие белков, обладающих антифризной активностью. В частности в корне акклиматизированной к холоду моркови был выделен и идентифицирован новы индуцируемы холодом антифризный белок с молекулярной массой 36 кДа. В ходе изучения его свойств было установлено, что этот белок подавляет рекристаллизацию льда и обладает термогистерезисной активностью.

Показано, что этот полипептид существует в растворе в виде N-гликозилированного мономера. Белок, так же как и остальные известные антифризные белки, локализован в апопласте. Соответствующий этому белку ген, как показали результаты исследований, является уникальным и индуцируется холодом.

Регулируемые холодом белки

Во время холодовой акклиматизации Arabidopsisthalianaсинтезируются различные регулируемые холодом полипептиды, которые не имеют или имеют очень небольшое сходство с другими известными белками. Регулируемые холодом гены cor15а и cor6.6 кодируют, соответственно, 15 и 6.6 кДа полипептиды. Известно, что полипептид COR15а транспортируется в хлоропласты и во время импорта процессируется в 9.4 кДа полипептид, обозначенный как COR15ам. Полипептид COR6.6, как считается, локализуется в цитозоле. Кодирующие последовательности ш5ам и cor6.6 были перенесены под промотор фага Т7 и экспрессированы в E. coli. Рекомбинантные полипептиды COR15аm и COR6.6 были очищены до почти гомогенного состояния с использованием комбинации фракционирования сульфатом аммония, ионообменной хроматографии и адсорбционной хроматографии на гидроксиапатите. COR15аm и большинство образцов COR15аm совместно мигрировали как на двумерном электрофорезе по O'Farrell, так и на неденатурирующем электрофорезе. Эти данные подтверждают место процессинга COR15а и показывают отсутствие различий в четвертичной структуре между COR15аm и большинством видов COR15аm в растениях. Напротив, миграция пятен COR6.6 и COR6.6 на двумерных гелях показывает, что значительная часть популяции COR6.6 в растениях модифицируется. При дальнейшем исследовании этих двух белков были определены их гидратационные характеристики и их действие на переходы смеси фосфолипидов из жидкокристаллического в гелеобразное состояние и из ламеллярной фазы в гексагональную IIфазу. После обезвоживания при осмотическом давлении от 8 до 150 МПа содержание воды в COR – полипептидах было меньше, чем в БСА, причем COR15ам был гидратирован меньше, чем COR6.6. Ни COR6.6, ни COR15ам не изменяли температуру вызванного дегидратацией перехода как дипальмитоилфосфатидилхолина, так и диолеилфосфатидилхолина из гелеобразного в жидкокристаллическое состояние. В мультиламеллярных везикулах, состоящих из смеси дипальмитоилфосфатидилхолин, ни COR15ам, ни COR6.6, ни БСА не влияли на вызванное обезвоживанием образование инвертированной гексагональной фазы как на функцию осмотического давления. Тем не менее, в смеси дипальмитоилфосфатидилхолин, дегидратировавшейся в присутствии COR15аm, наблюдалось специфическое ультраструктурное изменение – образование определенно поверхностно морфологии в ламеллярных доменах. Тем не менее, ни COR15ам, ни COR6.6, по-видимому, не участвуют в специфическом белково-фосфолипидном взаимодействии, изменяющим вызванное дегидратацией состояние фаз фосфолипидных везикул. Было проверено, действуют ли COR15ам и COR6.6 на индуцируемое холодом слияние или целостность мембран небольших униламеллярных везикул, состоящих как из различных видов фосфатидилхолина, так и из смеси диолеилфосфатидилхолина, диолеилфосфатидилэтаноламина и свободных стеролов, а также на общи липидны экстракт плазматических мембран как неакклиматизированных, так и акклиматизированных к холоду листьев риса. Когда везикулы были суспендированы в буферном растворе, как COR15ам, так и COR6.6 значительно уменьшали вызванное замораживанием слияние вне зависимости от их липидного состава. В то же время, когда везикулы были суспендированы в сахарозе или в среде, содержащей NaCl, COR-белки не оказывали влияние на индуцируемое холодом слияние. Более того, COR-белки не оказывали влияние на уменьшение вызванных холодом утечек, были ли везикулы суспендированы в чистом буфере либо в буфере с добавками NaCl или сахарозы. Фактически, действие COR-белков на везикулы, составленные из отдельных видов фосфатидилхолина, суспендированных в буфере, выражалось в аномальном увеличении вызванных замораживанием утечек. Таким образом, было установлено, что ни COR15ам, ни COR6.6 не имеют прямого криопротекторного действия на везикулы, замороженные invitro.

Многие растения, в том числе Arabidopsis, увеличивают устойчивость к замораживанию после воздействия низких незамораживающих температур. Данны ответ, называемый холодовой акклиматизацией, опосредован ДНК-регулирующим элементом «C-повтор / засухоотзывчивый элемент» и связан с индукцией генов COR. Усиление экспрессии у ArabidopsisCBF1, транскрипционального активатора, связывающегося с последовательностью CRT/DRE, индуцировало экспрессию генов COR и увеличивало устойчивость к замораживанию неакклиматизированных растений Arabidopsis. На основании этих данных был сделан вывод, что CBF1 представляет собой вероятный регулятор холодовой акклиматизации, контролирующий уровень экспрессии генов COR, и содействует повышению устойчивости к промораживанию.