Смекни!
smekni.com

Взаимодействие генов, генетика человека, селекция растений и животных (стр. 1 из 2)

Реферат

на тему: "Взаимодействие генов, генетика человека, селекция растений и животных"


ВЗАИМОДЕЙСТВИЕ ГЕНОВ

Отношение между генами и признаками достаточно сложное. В организме не всегда один ген определяет только один признак и, наоборот, один признак определяется только одним геном. Чаще один ген может способствовать проявлению сразу нескольких признаков, и наоборот.

Множественное действие генов (плейотропия) — процессы влияния одного гена на формирование нескольких признаков.

Например, у человека ген, определяющий рыжую окраску волос, обусловливает более светлую кожу и появление веснушек.

Иногда гены, определяющие морфологические признаки, влияют на физиологические функции, снижая жизнестойкость и плодовитость, или оказываются летальными. Так, ген, вызывающий голубую окраску у норки, снижает ее плодовитость. Доминантный ген серой окраски у каракулевых овец в гомозиготном состоянии детален, поскольку у таких ягнят недоразвит желудок и они погибают при переходе на питание травой.

Комплементарное взаимодействие генов. На развитие одного признака могут влиять несколько генов. Взаимодействие нескольких неаллельных генов, приводящее к развитию одного признака, называется комплементарным. Например, у кур имеются четыре формы гребня, проявление какой-либо из них связано со взаимодействием двух пар неаллельных генов. Розовидный гребень обусловлен действием доминантного гена одной аллели, гороховидный — доминантного гена другой аллели. У гибридов при наличии двух доминантных неаллельных генов образуется ореховидный гребень, а при отсутствии всех доминантных генов, т.е. у рецессивной гомозиготы по двум неаллельным генам, образуется простой гребень.

Результатом взаимодействия генов является окраска шерсти у собак, мышей, лошадей, форма тыквы, окраска цветков душистого горошка.

Полимерия — такое взаимодействие неаллельных генов, когда степень развития признака зависит от общего количества доминантных генов. По этому принципу наследуется окраска зерен овса, пшеницы, цвет кожи у человека. Например, у негров в двух парах неаллельных генов 4 доминантных, а у людей с белой кожей — ни одного, все гены рецессивные. Сочетания разного количества доминантных и рецессивных генов приводят к образованию мулатов с разной интенсивностью окраски кожи: от темной до светлой.

Закономерности изменчивости

Изменчивость такое же важное свойство организма, как и наследственность. Способность организма изменяться под воздействием окружающей среды адаптирует его к среде. Изменчивость есть результат взаимодействия генотипа со средой. Она бывает двух видов: ненаследственная (модификационная) и наследственная.

Модификационная изменчивость

Изменчивость, не связанная с изменением генотипа, возникающая у организмов под влиянием условий среды и приводящая к разнообразию фенотипов, называется модификационной. Изменения фенотипа являются реакцией на изменяющиеся факторы среды и не выходят за пределы нормы реакции.

Норма реакции — предел изменчивости признака, который обусловлен генотипом. Наследуется не признак, а норма реакции. Она бывает широкой, т. е. изменяется в большом диапазоне, и узкой. Например, широкой нормой реакции обладают такие признаки у человека, как масса тела, цвет волос; у коров — масса тела, количество молока. Узкая норма реакции характерна для следующих признаков: рост человека, цвет глаз; у коров — жирность молока; длина шерсти у овец. Чем шире норма реакций, тем пластичнее признак, что приводит к увеличению вероятности выживания вида в изменяющихся условиях.

Основные характеристики модификационной изменчивости.

1. Изменения не наследуются и носят фенотипический характер.

2. Изменения приспособительны и проявляются у многих особей в популяции, т. е. носят массовый характер. Например, у зайцев зимой окраска шерсти становится белой.

3. Изменения носят постепенный характер. Они адекватны изменению условий среды.

4. Изменения способствуют выживанию особей, повышают жизнестойкость и проводят к образованию модификаций.

Модификации образуют вариационный ряд изменчивости признака в пределах нормы реакции от наименьшей до наибольшей величины. Причина вариаций связана с воздействием различных условий на развитие признака. Чтобы найти предел изменяемости признака, определяют частоту встречаемости каждой варианты и строят вариационную кривую.

Вариационная кривая — графическое выражение характера изменчивости признака. Средние члены вариационного ряда встречаются чаще, что соответствует среднему значению признака.

Наследственная изменчивость

Наследственная изменчивость затрагивает генотип и передается по наследству. Она бывает комбинативной и мутационной.

Комбинативная изменчивость — появление новых сочетаний признаков вследствие перекомбинации генов. Основой комбинативной изменчивости является половой процесс; случайная комбинация негомологичных хромосом в мейозе и, как следствие, независимое наследование признаков; рекомбинация генов в результате кроссинговера. Комбинативная изменчивость определяет разнообразие особей и необходима для вида в его приспособлении к условиям среды.

Мутационная изменчивость — наследственные изменения генотипического материала хромосом и генов. Мутации имеют ряд характерных особенностей.

1. Затрагивают генотип и наследуются.

2. Носят скачкообразный и индивидуальный характер. Возникают у единичных особей в популяции.

3. Неадекватны условиям среды и могут быть нейтральными, полезными, чаще вредными.

4. Могут привести к образованию новых признаков, популяций или гибели организма.

В основе любых мутаций лежит появление новых типов белков.

Классификация мутаций.

1. По характеру изменения фенотипа мутации могут быть биохимическими, физиологическими, анатомо-морфологическими.

2. По степени приспособительности мутации делятся на полезные и вредные. Вредные — могут быть летальными и вызывать гибель организма еще в эмбриональном развитии.

Чаще мутации вредны, так как признаки в норме являются результатом отбора и адаптируют организм к среде обитания. Мутация всегда изменяет адаптацию. Степень ее полезности или бесполезности определяется временем. Если мутация дает возможность организму лучше приспособиться, дает новый шанс выжить, то она "подхватывается" отбором и закрепляется в популяции.

3. Мутации бывают прямые и обратные. Последние встречаются гораздо реже. Обычно прямая мутация связана с дефектом функции гена. Вероятность вторичной мутации в обратную сторону в той же точке очень мала, чаще мутируют другие гены.

Мутации чаще рецессивные, так как доминантные проявляются сразу же и легко "отбрасываются" отбором.

4. По характеру изменения генотипа мутации делятся на генные, хромосомные и геномные.

Генные, или точковые, мутации — изменение нуклеотида в одном гене в молекуле ДНК, приводящее к образованию аномального гена, а следовательно, аномальной структуры белка и развитию аномального признака. Генная мутация — это результат "ошибки" при репликации ДНК.

Результатом генной мутации у человека являются такие заболевания, как серповиднокле-точная анемия, фенилкетонурия, дальтонизм, гемофилия. Вследствие генной мутации возникают новые аллели генов, что имеет значение для эволюционного процесса.

Хромосомные мутации — изменения структуры хромосом, хромосомные перестройки. Можно выделить основные типы хромосомных мутаций:

а) делеция — потеря участка хромосомы;

б) транслокация — перенос части хромосом на другую негомологичную хромосому, как результат — изменение группы сцепления генов;

в) инверсия — поворот участка хромосомы на 180°;

г) дупликация — удвоение генов в определенном участке хромосомы.

Хромосомные мутации приводят к изменению функционирования генов и имеют значение в эволюции вида.

Геномные мутации — изменения числа хромосом в клетке, появление лишней или потеря хромосомы как результат нарушения в мейозе. Кратное увеличение числа хромосом называется полиплоидией (Зп, 4/г и т. д.). Этот вид мутации часто встречается у растений. Многие культурные растения полиплоидны по отношению к диким предкам. Увеличение хромосом на одну-две у животных приводит к аномалиям развития или гибели организма. Пример: синдром Дауна у человека — трисомия по 21-й паре, всего в клетке 47 хромосом. Мутации могут быть получены искусственно с помощью радиации, рентгеновских лучей, ультрафиолета, химическими агентами, тепловым воздействием.

Закон гомологических рядов Н.И. Вавилова. Русский ученый-биолог Н.И. Вавилов установил характер возникновения мутаций у близкородственных видов: "Роды и виды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов".

Открытие закона облегчило поиски наследственных отклонений. Зная изменчивость и мутации у одного вида, можно предвидеть возможность их появления и у родственных видов, что имеет значение в селекции.

Генетика человека

У человека 23 пары — 46 хромосом. В настоящее время изучен характер наследования примерно 2000 признаков.

Методы изучения генетики человека.

1. Генеалогический — изучение родословной человека. Определение доминантных и рецессивных признаков, характера генных мутаций. Этим методом удалось установить принцип наследования гемофилии.

2. Близнецовый — изучение фенотипа и генотипа близнецов и степени влияния среды на развитие признака. Однояйцевые близнецы (идентичные) образуются из одной зиготы и имеют одинаковый генетический материал. Наиболее интересны для изучения. Разнояйцевые близнецы (неидентичные) — близнецы из различных зигот, разных оплодотворенных яйцеклеток.