Смекни!
smekni.com

Виды физических полей тела человека (стр. 4 из 6)

В ряде лабораторий мира проводятся исследования магнитных сигналов, сопровождающих отклики мозга на осязательное, звуковое и зрительное раздражение. Уже первые результаты показали, что эти так называемые вызванные магнитные поля (ВМП) мозга обладают сравнительно простой структурой и по ним можно установить расположение источника биоэлектрической активности в коре головного мозга. Некоторые источники ВМП могут быть достаточно хорошо представлены в виде токового диполя. В ответ на зрительное раздражение возникает токовый диполь в затылочной части головы, на слуховое - в височной части. В ответ на раздражение мизинца правой руки возникает диполь, перпендикулярпый центральной борозде левого полушария. Этот диполь расположен в проекционной зоне чувствительных рецепторов различных частей тела, и именно в том месте, где, как показали нейрохирургические исследования, находится "представительство" мизинца. С помощью магнитографии становится возможным без хирургического вмешательства весьма точно выявить то место в коре мозга, куда приходит и где обрабатывается информация от органов чувств. Столь точно устанавливать положение источника биоэлектрической активности мозга ЭЭГ не позволяет.

Сравнительная простота ряда ВМП дает возможность проводить с ними надежные нейрофизиологические эксперименты. Например, исследовались магнитные поля мозга, вызванные реакцией па решетку из темных и светлых полос, периодически появляющуюся на экране осциллографа. Такой вид стимулирования в исследованиях зрительного восприятия весьма распространен, и его применение связано с современными теоретическими представлениями о восприятии образов. Оказалось, что амплитуда магнитного сигнала в этом случае больше, чем, например, при использовании простой вспышки. Периодически (от восьми до двадцати раз в секунду) предъявляя такую решетку, можно по фазовому отставанию магнитного отклика установить время прохождения сигнала но нервным путям от глаза до определенной области коры головного мозга.

Как установлено, прохождение сигнала - не пассивный процесс.

При этом осуществляется последовательная обработка информации в различных отделах мозга, и по времени этого "активного" запаздывания (т) можно в той или иной мере судить о характере этой обработки.

У большинства испытуемых время запаздывания для обоих полушарий мозга одинаковое, но у некоторых людей разница во времени реакции правого и левого полушарий достигала 0,1 с! Этот факт, по-видимому, может иметь клиническую ценность, например для ранней диагностики склероза.

Точное измерение положения области нервной активности, сопровождающей раздражение того или иного органа чувств, позволяет строить карты активности коры головного мозга: "соматотопическую" для осязания, "тонотопическую" для слуха, "ретинотопическую" для зрения.

Такие карты могут служить основой для понимания процессов переработки поступающей в головной мозг информации и постановки более сложных нейрофизиологических экспериментов на базе полученных результатов. Причем исследования можно проводить па вполне здоровых людях без какого-либо оперативного вмешательства и существенных неудобств для испытуемого.

Магнитография позволяет исследовать процессы не только в коре больших полушарий, но и в глубоких структурах мозга и не только отклики на возбуждение органов чувств, но и более сложные процессы.

Вполне реально создание набора, скажем, из ста чувствительных элементов, одновременно регистрирующих магнитные поля в разных точках вокруг головы человека. Обработка этих данных на ЭВМ даст картину распределения источников поля по всему объему мозга. Такая система во многом схожа с уже существующими системами компьютерной рентгеновской томографии и ЯМР-интроскопии, из которых первая дает полную картину распределения плотности вещества в мозге на реновации данных о поглощении рентгеновских лучей, а вторая - картину распределения определенных химических веществ, полуденную методом ядерного магнитного резонанса. Магнитные методы обещают в перспективе построение трехмерной картины электрической активности мозга.

Магнитные исследования мозга реально ведутся всего лишь несколько лет, но уже первые результаты показали большую перспективность метода. Биомагнетизм оказался не только важной частью биологической науки, но и обеспечил базу для развития других применений, сверхчувствительной магнитометрии.

Наряду с транзистором и лазером детище квантовой механики сквид лишний раз демонстрирует, насколько практичной стала эта удивительная наука, казавшаяся в прошлом столь абстрактной. [1]

9 .Радиоволны сверхвысоких частот (СВЧ)

Интенсивность излучения волн СВЧ-диапазона за счет теплового движения ничтожна. Непосредственно из формулы Планка, при перепаде температуры относительно окружающей среды на 1 К она составлю ет всего 2 • 10 13 Вт/м2. Как заметил академик Ю.В. Гуляев, по своей интенсивности это соответствует свету свечи, помещенной на расстояние свыше 10 км.

Эти волны в теле человека затухают слабее, чем инфракрасное излучение. Поэтому с помощью приборов для измерения слабых электромагнитных полей этого диапазона частот, так называемых СВЧ-радиометров, можно измерить температуру в глубине тела человека.

Волны из тела человека принимают посредством контактной антенны - аппликатора. Дистанционные измерения в этом диапазоне, к сожалению практически невозможны, так как волны, выходящие из тела, сильно отражаются обратно от границы тело-воздух.

Главная трудность при анализе измерений глубинной температуры по радиотепловому излучению на его поверхности состоит в том, что трудно локализовать глубину источника температуры. Для ИК-излучения эта проблема не возникает: излучение поглощается на глубине 100 мкм, так что его источником однозначно является поверхность кожи. Радиоволны СВЧ-диапазона поглощаются на расстоянии, которое составляет несколько см.

Средняя глубина, с которой измеряется температура, определяется глубиной проникновения d. Она зависит от длины волны и типа ткани. Чем больше в ткани воды (электролита), тем с меньшей глубины можно измерить температур в жировой ткани с низким содержанием воды d = 4 - 8 см, а и мышечной ткани (с высоким содержанием воды) эта величина уменьшается до значений d = 1,5 - 2 см.

Оптимальными для измерения глубинной температуры являются радиометры с длиной волны в свободном пространстве X= 20 - 40 см: у более коротковолновых устройств глубина проникновения снижается до нескольких миллиметров, то есть они фактически, так же как и ИК-тепловизоры, измеряют температуру кожи, а у более длинноволновых радиометров (А, = 60 см) слишком велик размер антенны и мала пространственная разрешающая способность.

Хотя метод СВЧ-радиометрии измеряет среднюю по глубине температуру в теле человека, сейчас известно, какие органы могут менять температуру, и поэтому можно однозначно связать изменения температуры с этими органами. Например, изменение температуры во время мышечной работы, очевидно, связано именно с мышечной тканью, изменения глубинной температуры головного мозга, которые достигают 1-2 К, определяются его корой.

10. Механизмы изменения температуры в теле человека

Тепловой баланс каждого участка тела поддерживается за счет трех факторов:

1) генерации тепла вследствие метаболизма;

2) обмена теплом с соседними участками тела из-за термодиффузии;

3) конвективного теплообмена посредством кровотока, то есть за счет притока и оттока тепла с кровью. За счет конвективного теплообмена одни ткани могут нагреваться, а другие охлаждаться. Температура крови, притекающей по артериям в различные органы, определяется температурой "теплового ядра" тела (фактически грудной клетки) и составляет около 37 °С.

Кровь, притекающая в покоящиеся мышцы (их температура около 35,5 °С), вызывает их нагрев. Напротив, температура мозга из-за активной работы нейронов ближе к 38 °С, т.е. притекающая кровь его охлаждает. В силу этого различия временное прекращение кровотока приводит к охлаждению мышцы и, наоборот, к нагреву мозга.

11. Применение СВЧ-радиометрии в медицине

Основными сферами практического применения СВЧ-радиометрии в настоящее время представляются диагностика злокачественных опухолей различных органов: молочной железы, мозга, легких, метастазов, а также функционального состояния коры головного мозга. При этом используют так называемые функциональные пробы: воздействия, вызывающие известный отклик организма. В этом качестве применяется, например, глюкозная проба - пациент принимает несколько граммов раствора глюкозы, после чего начинают измерения внутренней температуры антеннами, установленными в нескольких точках на поверхности тела около исследуемого органа. Если есть злокачественные опухоли или метастазы, то после глюкозной пробы видно увеличение глубинной температуры тела в этих областях.

Возможный биофизический механизм повышения температуры связан с тем, что глюкоза активно усваивается клетками. Эффективность преобразования глюкозы в АТФ в раковых клетках значительно ниже, чем у здоровых: из одной молекулы глюкозы в раковых клетках синтезируется 2 молекулы АТФ, а в здоровых - 38. Поэтому раковым клеткам необходимо переработать гораздо большее количество глюкозы. Поскольку коэффициент полезного действия этого процесса не превышает 50%, раковые клетки сильно разогреваются. Этот разогрев в силу физиологических механизмов индуцирует повышение температуры и близлежащих нормальных тканей. Суммарный подъем температуры регистрируется СВЧ-радиометром. [4]

12. Инфракрасное излучение

Наиболее яркую информацию о распределении температур и поверхности тела человека и ее изменениях во времени дает метод динамического инфракрасного тепловидения. В техническом отношении это полный аналог телевидения, только датчик измеряет не оптическое излучение, отраженное от объекта, которое видит человеческий глаз, как в телевидении, а его собственное, не видимое глазом, инфракрасное излучение. Тепловизор состоит из сканера, измеряющего тепловое излучение в диапазоне длин волн от 3 до 10 мкм, устройства для сбора данных и ЭВМ для обработки изображения. Тепловое излучение от разных участков тела последовательно, с помощью колеблющихся зеркал, проецируют на один приемник инфракрасного излучения, охлаждаемый жидким азотом. Тепловизоры передают в 1 секунду 16 кадров. Чувствительность тепловизора при измерении одного кадра - порядка 0,1 К, однако ее можно резко увеличить, используя ЭВМ для обработки изображений.